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Brief Self-Introduction 
Professor, Colorado State University, USA 
BS degree: MIT 
Ph.D. degree: Princeton 
Fellow IEEE 
Fellow ACM 
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Applicability of Stochastic Robustness Model 
 variety of computing and communication  

environments, such as 
cluster 
grid 
cloud 
multicore 
content distribution networks 
wireless networks 
sensor networks 

design problems throughout various  
scientific and engineering fields 
examples we are exploring 

 search and rescue 
 smart grids 
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Heterogeneous Parallel Computing System 
 interconnected set of different types of  

machines with varied computational capabilities 
workload of tasks with different  

computational requirements 
each task may perform differently  

on each machine 
furthermore: machine A can be better than  

machine B for task 1 but not for task 2 
 resource allocation:  

assign (map) tasks to machines  
to optimize some performance measure 
NP-complete (cannot find optimal in reasonable time) 
ex.: 5 machines and 30 tasks →  530 possible assignments 

 530 nanoseconds  > 1,000 years! 
use heuristics to find near optimal allocation 
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 sensors produce periodic data sets, each with multiple data files 
 N independent tasks process each data set within Λ time units 
 N tasks statically assigned to M heterogeneous machines, N>M 
 similar computing environments 
satellite data sets for producing maps 
surveillance data sets for homeland security 

 

Ex.: Radar Data Processing for Weather Forecasting 
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Uncertainty in Environment 
variability across the data sets results in variability of the 

execution time of each task even on the same machine 
examples 

 types of objects found in a radar scan data file 
 increase in number of objects in a radar scan data file 

 
 
 

 
unable to predict exact execution times of tasks 
uncertainty parameters in the system 
know history of task execution times on each machine  

over different data sets 
need to find resource allocation of tasks to machines that 

is robust against this uncertainty by using this history 
•7 7 
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Problem Statement 
unpredictable execution times of the tasks across data sets 
 calculate the probability that every data set is 

processed before the next data set arrives 
have a probabilistic guarantee of performance 

problem statement 
determine a robust static resource allocation  
minimize time period (Λ) between data sets  
constraint: a user-specified probability of 90% that  

all tasks will complete in Λ time units for each data set 
  

robust 
resource 
allocation 

machines 
performance measure 

constraints 
uncertainties 

heuristics 

tasks 



 term “robustness” usually used without explicit definition 
The Three Robustness Questions 

1. what behavior of the system makes it robust? 
 ex. execute all tasks within Λ time units 

2. what uncertainty is the system robust against? 
 ex. execution times of tasks vary over different data sets 

3. how is robustness of the system quantified?  
 ex. probability that the resource allocation will  

execute all tasks within Λ time units for every data set 

Defining Robustness for Resource Allocation 



● definition of robustness 
● stochastic model and metric for robustness    
● integration into static resource allocation heuristics 
● use of model for a dynamic environment 
● conclusions 
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Construct Histogram from Collected Information 
 know history of task execution times on each machine 

over different data sets 
 consider collecting samples of how long a given task  

has taken to execute on a given machine in a histogram 
x-axis: execution time within 10 second interval bins 
y-axis: frequency = height of bar for a given interval 
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Generating a PMF from a Histogram 
a probability mass function (PMF) can be generated  

using a histogram 
 convert the frequency to a probability to create PMF 
probability = frequency/total # samples 

example: probability of value from 10 to 19 = 6/200 = 3% 
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assume task 1 and task 2 only tasks assigned to machine A  
can find completion time PMF for machine A to do both tasks 
if tasks independent, it is  the “discrete convolution” 

(combination) of the execution time PMFs for the two tasks 
 
 
 
 
 
 
 

 
 

   
 

 

PMF for Completion Time of Machine 

13 

τ τ τ
τ τ1 2

a 1 2p( ) = (p( ) p( ))k
k+

= ⋅
=

∑

= 

PMF for t1 on  
machine A  

execution time τ1 

2 3 4 5 
0.1 

0.2 

0.3 

0.4 

pr
ob

ab
ili

ty
 

1 
execution time τ2 

PMF for t2 on  
machine A 

2 3 4 5 
0.1 

0.2 

0.3 

0.4 
pr

ob
ab

ili
ty

 

1 

PMF for completion 
time of machine A 

completion time τa 

pr
ob

ab
ili

ty
 

2 4 6 8 10 

0.1 

0.2 



Intuitive View of Stochastic Robustness  

PMFs for machine completion time based on 
(1) PMFs for tasks already assigned to that machine, and 
(2) PMF for task i – which may be assigned to that machine 
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 Tij : execution time random variable  
for task i on machine j  

 Sj : stochastic completion time for  
machine j  (tasks independent)  
 

  Λ : deadline for completing all tasks 
 machine j stochastic robustness Prob[Sj  ≤ Λ] 
 Stochastic Robustness Metric (SRM)  
assuming independence of machines 

 
 

 goal of heuristics – two possible robustness situations  
maximize SRM for a given Λ value 
minimize Λ for a given SRM value 
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Stochastic Robustness Heuristic Goals 
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Outline 

● definition of robustness 
● stochastic model and metric for robustness    
● integration into static resource allocation heuristics 
● use of model for a dynamic environment 
● conclusions 



Static Resource Allocation Heuristics 
goal: static assignment of N tasks to M machines  
minimize Λ for a given SRM value, for example 90% 

greedy heuristics 
example: Two-Phase 
allocation made with locally optimal decisions 

global heuristics 
example: Genitor – steady-state  

genetic (evolutionary) algorithm 
improve allocation over iterations 

greedy heuristic generally derives allocation faster than global 
global heuristics can improve upon greedy results  
use Lambda Minimization Routine (LMR)  

to find for a given resource allocation the  
minimum Λ is for SRM value of 90% 
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  Lambda Minimization Routine (LMR) 
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Two-Phase Greedy Heuristic 
based on the concept of the Min-min heuristic 
Λ(ti,mj) call to LMR function for minimum Λ  

if task ti is added to machine mj  
 

Two-Phase Greedy procedure 
while there are still unmapped tasks 

 

phase 1: for each of the unmapped tasks  
 j value that minimizes Λ(ti,mj), 1 ≤ j ≤ M 

 
phase 2: among these task/machine pairs  

 find pair with minimum Λ(ti,mj) 
 map this task to its associated machine 
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Genitor Steady State Genetic Algorithm (GA) 
chromosome of length N (number of tasks) = a mapping (solution) 
i th element identifies the machine assigned to task i  

 
 

population size of 200 (decided empirically) 
 initial population generation 
one chromosome: solution from the  

Two-Phase Greedy heuristic (“seed”) 
other 199: simple greedy heuristic 

population is put in ascending order based on minimum  
Λ value for the given SRM (probability)  
LMR (Lambda Minimization Routine)  

is used to find minimum Λ value  
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Procedure for Genitor 
 generate initial population   
 while stopping criterion 
select two parent chromosomes  

from the population 
perform crossover 
 for each offspring chromosome 

 perform mutation 
 apply local search  

 insert offspring into population  
based on minimum Λ order 

 trim population to population size 
 end of while 
 output the best solution 
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Genitor: Crossover 
 selection of parents is done probabilistically 
 crossover is “two point reduced surrogate” 
crossover points are randomly selected  

so that at least one element is different 
elements between crossover points are exchanged 
generates two offspring 
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offspring a offspring b 

  parent a parent b 



Genitor: Mutation 

mutation applied to offspring  
obtained from the crossover  
 for each element of each  

offspring chromosome 
 assignment has a 1%  

probability of mutation 
mutation randomly selects  

a different machine 
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Genitor: Local Search 
 local search applied to each offspring 
1. for machine with individual highest Λ  

 consider moving each task  
to other machines  

 if improvement, move the task that  
gives smallest overall system Λ 

2. repeat 1 until no more improvement 
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Recall: Procedure for Genitor 
 generate initial population   
 while stopping criterion 
select two parent chromosomes  

from the population 
perform crossover 
 for each offspring chromosome 

 perform mutation 
 apply local search  

 insert offspring into population  
based on minimum Λ order 

 trim population to population size 
 end of while 
 output the best solution 
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Simulations: Performance of Static Heuristics 

•Two-Phase 
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 N = 128 tasks, M = 8 machines, SRM value set to 90% 
 50 simulation trials, different PMFs for task/machine pairs 
 95% confidence intervals shown 

Genitor   lower bound 

Genitor better than Two-Phase 
by more than 7% (based  

on absolute performance) 
by 50% based on  

lower bound 
but takes 200 times longer 
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Outline 
● definition of robustness 
● stochastic model and metric for robustness    
● integration into static resource allocation heuristics 
● use of model for a dynamic environment 
● conclusions 

 
 



Dynamic System Model 
modeled after real-world satellite imagery processing system 
 cluster of M heterogeneous machines 
each dynamically arriving user request has three elements 
which existing utility application to be executed 
archived data to be processed by that application 
individual deadline for completing that particular request 

 agreement between service provider and customer 
if miss deadline, complete on a “best effort” basis 

 resource manager assigns requests to machines 
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Dynamic System Performance Goal 
application execution time dependent on data size and content 
probability mass functions (PMFs) for each application’s 

execution time on each machine, based on experiential data 
no inter-application communication 
 requests cannot be re-assigned 
assume data needed for request is staged to machine  

while request in queue 
goal: complete all requests by their individual deadlines 
late requests will be completed on “best effort” basis 
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Three Robustness Questions for Dynamic System 
what behavior makes the system robust? 
completing all requests by their individual deadlines 

what uncertainty is the system is robust against? 
application execution times may vary substantially 

how is robustness of the system quantified? 
probability of completing all requests  

by their individual deadlines 
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Probability of Completing All Requests by Deadlines 

a new mapping event is  to occur at time-step t(k) 

 rij – i th request assigned to machine j at time-step t(k) 

p(rij) – probability of completing rij by its deadline 

nj – number of requests assigned to machine j at time-step t(k) 

p(r1j , r2j , ··· , rnj j
 ) – joint probability of completing  

all requests assigned to machine j by their individual deadlines 
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Calculating Joint Probabilities ― p(r1j , r2j ) 

1. find p(r1j): prob. r1j meets deadline 
a) t(k) = current time  
 drop pulses < t(k)  
 renormalize 

b) sum pulses < deadline D1j 
2.  find p(r1j, r2j) = p(r1j) ∙ p(r2j | r1j)  

a) find PMF for r1j meeting D1j 
 drop pulses >  deadline D1j 
 renormalize 

b) convolve with execution  
time PMF for r2j 

c) p(r2j | r1j) =  
 [sum pulses < deadline D2j] 
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Dynamic Stochastic Robustness Metric 

 find probability to complete all requests p(r1j, r2j, ···, rnj j
) 

          p(r1j, r2j )  = p(r1j) ∙ p(r2j | r1j) 
     p(r1j, r2j, r3j)  = p(r1j, r2j ) ∙ p(r3j | r1j, r2j ) 
        = 
p(r1j, r2j, ···, rnj j 

)  = p(r1j, r2j, ···, rnj−1 j ) ∙ p(rnj j
 | r1j, r2j, ···, rnj−1 j ) 

 
ρ(k) – stochastic robustness metric at time-step t(k) 

 
 

we use ρ(k) in dynamic resource allocation heuristics 

 

(k)
1 2

1 
p( )

jj j n j
j M

ρ

≤ ≤

= ∏



r1j rnj j
  ···   r3j   r2j 

machine j queue 
machine j 

executing 



34 

Outline 

● definition of robustness 
● stochastic model and metric for robustness    
● integration into static resource allocation heuristics 
● use of model for a dynamic environment 
● conclusions 
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Current and Future Research 
methods to build the initial PMFs 
update PMFs using experiential data 
effective techniques for convolving PMFs  
 incorporating stochastic robustness into static and dynamic 

resource allocation heuristics for different  environments 
considering energy or power as a performance or constraint 
combining PMFs and probabilities when not independent 
ex. DAG of communicating tasks 

use relative probabilistic information about uncertainty values 
how to combine the PMFs from multiple uncertainties  

to calculate single SRM  
how to be robust with respect to inaccuracies in the PMFs 

 



The Three Robustness Questions 
1. what behavior of the system makes it robust? 
2. what uncertainties is the system robust against? 
3. how is robustness of the system quantified?  

 

devised a stochastic model for robust resource allocation 
used stochastic robustness in resource allocation heuristics  
 listed areas for future research in robustness 
please see our papers listed at 

www.engr.colostate.edu/~hj/Robust_Papers.pdf 
for more information and references to other relevant research 

Concluding Remarks 
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