

Experiment $\begin{bmatrix} Feed \\ material \\ s \end{bmatrix} \begin{bmatrix} Mass fed \\ (kg) \end{bmatrix} Fluidising \\ gas \end{bmatrix}^{1}$				Fluidising	Fluidising Gas	Other Gas	
	rates (L/min)	Flows (N_2) (L/min)					
1	Iron Ore	0	4	N ₂	60	40	
2	Iron Ore	0	4	H_2/N_2	30/40	40	
3	Iron Ore Coal	2	2	N ₂	60	40	
4	Iron Ore + Coal	2	2	H ₂ /N ₂	30/40	20	
5	Coal	4	0	CO_2/N_2	20/40	20	
6	Coal	4	0	Air/N ₂	5/55	40	
7	Coal	4	0	Air/N ₂	20/40	40	

	Trace Element Analysis										
Experiments		Ra Sam	iw iples	Iron	Ore und	ler N ₂	Iron	Ore w	nder 2	Iron (coal u	Ore + inder N ₂
				Experiment 1		Ex	Experiment 2			Experim 3	
Trace Elements	Units	Iron ore	Coal	BD	BGH	CYN	BD	BGH	CYN	BD	BGH
Antimony (Sb)	mg/kg	< 0.5	< 0.5	< 0.5	0.61	1.2	0.58	0.51	2.6	< 0.5	< 0.5
Arsenic (As)	mg/kg	(3.2)	< 0.5	2	5.9	24	2.3	4.6	53	1.3	4.4
Berylium (Be)	mg/kg	0.5	2.5	0.57	0.83	1.4	0.91	1.5	3.8	0.82	1.1
Boron (B)	mg/kg	0.93	1.6	2.3	4.3	6.8	4.4	9.8	25	2.7	5.1
Cadmium (Cd)	mg/kg	< 0.5	< 0.5	< 0.5	0.77	3.3	< 0.5	0.86	9.3	< 0.5	< 0.5
Chromium (Cr)	mg/kg	11	7.8	8.9	14	34	12	17	36	8.2	20
Cobalt (Co)	mg/kg	2.6	(11)	2.7	3.3	6.7	3.6	3.2	5.2	3.4	5.2
Copper (Cu)	mg/kg	6	5.4	7.1	25	49	11	13	30	4.8	15
Lead (Pb)	mg/kg	_14	8.9	(2.1)	(4.6)	22	0.54	16	63	1.1	13
Manganese (Mn)	mg/kg	(750)	1.7	1260	940	1370	1380	1200	2090	55	930
Nickel (Ni)	mg/kg	5.2	(23)	17	46	200	14	23	53	8.4	82
Selenium (Se)	mg/kg	< 0.5	0.59	< 0.5	< 0.5	1.7	< 0.5	< 0.5	4	< 0.5	0.71
Thorium (Th)	mg/kg	1.1	2.6	1	1.5	3.4	1.3	1.6	3.5	1.4	1.5
Uranium (U)	mg/kg	0.64	0.54	0.5	0.73	1.3	0.75	0.86	1.6	0.5	0.69
Zinc (Zn)	mg/kg	8.4	(54)	9.8	30	190	6.5	74	180	14	82
Total Solids	%	99.6	80.4								

Exp.	Total Mercury	Elementa Hg(0)	l Mercury	Oxidised Hg(II)	Mercury	Particle Bound Mercury Hg(P)		
	μg/Nm ³	µg/Nm ³	%	µg/Nm ³	%	µg/Nm ³	%	
1	3.25	3.2	98.7	0	0	0.04	1.3	
2	2.3	1.9	82.2	0	0	0.4	17.8	
3	0.45	0.3	71.5	0.1	26.2	0.01	2.3	
4	4.21	4.1	97.3	0.01	0.4	0.1	2.3	
5	3.3	2.4	72.7	0	0	0.9	27.3	
6	7.40	7.3	98.1	0	0	0.1	1.9	

		EAF site			Backgro	und site		
SP		Min	Max	Mean	Min	Max	Mean	
	Na	nd	nd		nd	4774.3	832.1	
	AI	507.8	1353.8	859.2	34.4	182.0	121.0	
	Si	1989.5	5445.2	3412.1	329.5	843.3	607.4	
	Р	nd	nd		nd	nd		
	S	125.3	737.5	409.7	136.7	1130.4	529.7	
	CI	122.7	1921.2	759.9	86.3	4945.7	2170.6	
	к	112.9	517.3	296.3	89.6	222.9	144.2	
	Ca	3531.7	7418.4	5727.0	75.7	414.2	183.9	
	Ті	57.4	222.8	127.2	3.3	24.9	12.7	
	v	nd	nd		nd	nd		
	Cr	10.5	96.2	53.4	nd	nd		
	Mn	231.5	647.5	477.7	2.5	19.9	7.3	
	Fe	4169.6	24415.2	11791.3	251.4	586.7	400.2	
	Co	nd	nd		nd	nd		
	Ni	0.0	290.3	107.1	0.0	193.0	73.4	
	Cu	21.2	239.5	94.4	3.9	11.9	8.6	
	Zn	698.7	3685.5	1438.0	4.8	33.5	20.4	

	BF/BOF	EAF	DRI
Energy consumption (GJ/t)	22	5.8	10
CO _{2e} emissions (tCO _{2e} /t)	2.1	0.7	0.4
Water consumption (m ³ /t)	2.6	0.6	0.8
Land use (m ² /t)	1.7	0.5	0.4
Emissions to air (kg/t)			
NO _x	1	0.04	0.2
SO ₂	1	7.4×10 ⁻⁴	
со	56	9.8	
PM ₁₀	0.15	0.14	0.13
PM _{2.5}	1.4×10 ⁻²	0.3×10 ⁻²	7.7×10 ⁻²
Pb	2.6×10 ⁻⁴	1.4×10 ⁻⁴	
Hg	9.8×10 ⁻⁶	0.1×10 ⁻⁶	
As	6.2×10 ⁻⁶	6.6×10 ⁻⁶	
Cr ⁶⁺	4.5×10 ⁻⁶		
Ni	3.5×10 ⁻⁵	1.6×10⁵	
Cd	8.1×10 ⁻⁶	0.5×10 ⁻⁶	

Г

Sustainability	parameters	Ironmak	ting and Stee	Coal fired		
expressed in p		BF/BOF	EAF	DRI	Electricity Production	Wheat Productio
	5 year increase in global production rate Product value (\$/t or	20.6%	3.9%	24.1%	12.9%	15.3%
	\$/MWh) Energy consumption	715	650	510	265	276
	(MJ/\$) CO _{2e} emissions	31	9	20	14	9
	(kgCO _{2e} /\$) Water consumption	3	1.1	0.8	3.5	1.1
	(1/\$)	3.6	0.9	1.7	290	5400
	Land use (m ² /\$)	2.4×10 ⁻³	0.7×10 ⁻³	0.7×10 ⁻³	1.8×10 ⁻³	5×10 ⁻⁶
	Emissions to air (g/\$)					
	NO _x	1.3	0.06	0.45	2695	
	SO_2	1.4	0.001		3930	
	CO	80	15		93	
	PM10	0.2	0.2	0.25	23	
	PM _{2.5}	0.02	0.004	0.15	11	
	Pb	4×10 ⁻⁴	2×10 ⁻⁴		45×10 ⁻⁴	
	Hg	1×10 ⁻⁵	0.01×10 ⁻⁵		33×10 ⁻³	
	As	0.9×10 ⁻⁵	1×10 ⁻⁵		67×10 ⁻⁵	
	Cr ⁶⁺	0.6×10 ⁻⁵	5		22×10 ⁻⁵	
	Ni	5×10 ⁻⁵	2.5×10 ⁻⁵		719×10 ⁻⁵	
	Cd	1×10 ⁻⁵	0.08×10 ⁻⁵		562×10 ⁻⁵	
	TYOF					
		ool of the I		4		3

