Panel on Emerging Technologies

AP2PS 2011, Lisbon, Portugal

Eva Hladká

eva@fi.muni.cz

Faculty of Informatics, Masaryk University
Brno, Czech Republic
Figure: The progress of humans’ count on the planet.
IP Addresses – Mid 90s

- Internet IP addresses will run out around 2003
 - however, *B*-class addresses will run out earlier
 - ⇒ a new IP protocol (having bigger address space) is necessary
IP Addresses – The Idea of Transit to IPv6

- Size of the Internet
- IPv6 Deployment
- IPv6 Transition - Dual Stack
- IPv4 Pool Size

Time
IP addresses – Around the year 2000

- IPv6 was not alone – CIDR, NAT
- IPv4 addresses will run out around the year 2030
 ⇒ “Don’t worry, be happy!”
IP addresses – Year 2011

- the IP addresses **have already run out** (February 2011)
 - “Houston, we have a problem!” :-(
IPv6 is still a rarity

- average data traffic **through AMS-IX**
 - IPv4: 900 Gb/s (rising)
 - IPv6: 2.1 Gb/s (slooowly rising) . . . 0.23%
- web servers’ statistics:
 - just around 0.35% users goes through IPv6 (Google stats.)
IPv4 vs. IPv6 – Topology Map

Copyright © 2010 UC Regents. All rights reserved.
Short time to perform the transition . . .
...we’ll most probably end-up with
BGP: The number of Autonomous Systems on the Internet

<table>
<thead>
<tr>
<th>Date</th>
<th>Internet AS</th>
<th>Allocated AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>3000</td>
<td>5000</td>
</tr>
<tr>
<td>2000</td>
<td>5000</td>
<td>7000</td>
</tr>
<tr>
<td>2002</td>
<td>7000</td>
<td>9000</td>
</tr>
<tr>
<td>2004</td>
<td>9000</td>
<td>11000</td>
</tr>
<tr>
<td>2006</td>
<td>11000</td>
<td>13000</td>
</tr>
<tr>
<td>2008</td>
<td>13000</td>
<td>15000</td>
</tr>
<tr>
<td>2010</td>
<td>15000</td>
<td>17000</td>
</tr>
<tr>
<td>2012</td>
<td>17000</td>
<td>19000</td>
</tr>
</tbody>
</table>
BGP: The growth of the BGP routing table
Services’ Scalability – atlases.muni.cz

- a collection of high resolution histological images
 - established and operated by MU and CESNET
 - publicly available
 - a free registration is required
- to ease the registration, atlases make it possible to use federated access
 - unique penetration in various federations
 - currently member of cca 15 national federations

- BUT: huge administration overheads
 - registration with a federation requires a lot of paper work
 - filling in forms, gathering signatures, . . .
 - routine operations must be done separately for every single federation
 - mainatanence of metadata, public keys, certificates, . . .
Services’ Scalability – Public Key Infrastructure (PKI)

- PKI very often used as a means of scalable authentication mechanism
 - it has its limits, too

- proper operations of PKI imposes strict requirements on:
 - CA - often manual operations
 - RA - need for a “web of trust”
 - best practices - proper distributions of CRLs, ...

- BUT: can’t cope well with a huge number of subscribers
 - a remedy can be further “delegations” - i.e. using identity federations
 - but remember the previous slide for their issues :-)

Eva Hladká (FI MU, Brno, CZ) Emerging Technologies
Open issues in Data-as-a-Service (DaaS)

Quang Hieu Vu
quang.vu@kustar.ac.ae
Standardization

• No standard for DaaS description
 – Each service provider has its own way to describe the provided service/data
 – Description is in html documents

• Limitations
 – Cannot automate service discovery
 – Cannot composite data/service from different service providers
 – …
Service/data integration

- Each DaaS may have
 - A unique service strength
 - A unique provide data set
 - Similar data sets

- How to combine service/data from different providers
 - To leverage strengths of different services
 - To combine data from different datasets
Constrains and optimization

• Some specific data cannot be exported out of a country
 – How to manage data constraints

• Similar data may have different price/cost in different providers
 – How to optimize data delivery to obtain the cheapest cost for the data
Stream data

- Stream data is pervasive
 - Sensor data
 - Stock data
 - Social networking data

- How to provide stream DaaS efficiently
 - Solve issues in combination of data stream processing and cloud computing
Emerging Technologies:
Integration of Search, Mining, and Sensing
Technologies for Cyber Physical Systems

Takahiro Hara (Osaka University)

Panel in NextTech 2011, Nov. 23, 2011
Emerging Technology: Cyber Physical Systems (CPSs)

- Urban Sensing (CENS/UCLA, USA)
- CitySense (Sensor Networks, Inc., USA, 2008-)
 - Providing user distribution in San Francisco (iPhone, Blackberry)
 - Queries like “where do people reside and where will they go?”
 - Using the recorded data (few billions) and real-time data (several tens of thousands) obtained by current users, the current status can be predicted in real-time.

- What is lacking?
 - No universal platform for managing (e.g., integrating and reusing) sensor and other data
 - Real-time data obtained from Twitter and Blog are not fully used.
Future direction: Integration of sensor and cyber data

- A huge amount of social media contents in the cyber space
 - Web, Wikipedia
 - Blog
 - Twitter, Flickr, etc.

- Various sensor data generated in the physical space
 - Sensors monitor environments and events in the real world.
 - temperature, rainfall, seismometer, security camera, etc.

- With the rapid diffusion of smart-phone,
 - People can send and collect rich information anytime, anywhere.
 - Smart-phones can be sensors!
 - GPS, acceleration, etc. People’s location and movement
Application scenarios

- GPS data (users’ locations) represent places where people reside and their dynamism.
- Twitter data (with geo tag) tell why people get together at the places.
- .. show what happens in a town.
- Useful for
 - Crime prevention, Pandemic detection, Traffic control, etc.
 - Marketing (e.g., distributing e-coupons), navigation, recommendation of spots (users’ decision making), etc.
System architecture and research issues

Integration of hetero. data
- Linking between hetero. data
- Query processing over hetero. Data
- Creating new services from the analytical (query) result

Analysis and recognition of real-world
- Efficient analysis of complicated structured data
- Understanding analytical result

Mechanisms for participation
- Common data format & config.
- Mechanism to collect / manage data from general users (e.g. GPS / tweets from smart phones)