Challenges on Services

Guadalupe Ortiz Bellot
University of Cádiz (Spain)
Guadalupe.ortiz@uca.es
Outline

• Challenge 1:
 Devices Evolution → Services Evolution

• Challenge 2:
 Mobiles Evolution → Services Evolution

• Challenge 3:
 Business Evolution → SOAs evolution
DEVICES EVOLUTION → SERVICES EVOLUTION (I)

Personal Computers
Laptops
Mobile Devices
PDAs
TVs
Electrical Appliances
Vehicles
Et cetera
DEVICES EVOLUTION → SERVICES EVOLUTION (II)

Adapting to the device type

Generic answer

Invocation

Adaptation
MOBILES EVOLUTION \rightarrow SERVICES EVOLUTION (I)
MOBILES EVOLUTION → SERVICES EVOLUTION (II)

Adapting to the device model and user preferences

Generic answer

Invocation
MOBILES EVOLUTION → SERVICES EVOLUTION (III)
MOBILES EVOLUTION → SERVICES EVOLUTION (IV)

- Giving them **as much services as possible**
- **Adapting** these services to mobile devices **properly**
- Making devices **aware of user context**
BUSINESS EVOLUTION \(\rightarrow\) SOAs EVOLUTION (I)

- Invocation.
- Tourist information?
- Event
- Adaptation
- Generic answer

Invocation. Tourist information?
BUSINESS EVOLUTION → SOAs EVOLUTION (II)

Complex event pattern

detected

Avian influenza suspect case

Complex event

OR

AND
Remarks

- Challenge 1:
 Devices Evolution \rightarrow Services Evolution

- Challenge 2:
 Mobiles Evolution \rightarrow Services Evolution

- Challenge 3:
 Business Evolution \rightarrow SOAs evolution
Thanks for your attention!
Elastic Clouds Enable Intelligent Applications

Panel on Cloud Computing Challenges
Cloud Computing 2011
Sep. 26, 2011

Peter Van Roy

Université catholique de Louvain
Louvain-la-Neuve, Belgium

© 2011 Peter Van Roy
Elastic Clouds Provide Massive Resources at Low Cost

- **Elasticity** is the ability to ramp up resources quickly to meet demand
 - Like electric power distribution
- With elastic clouds the enormous dark blue area becomes available
- Applications that need enormous resources for short times can get them for low cost!
 - Like electric power distribution, you pay only for the volume (cost is product of time and number of machines)
 - This is exactly what intelligent applications need!

\[
\begin{align*}
 r \cdot t & \leq c_0 \\
 r_0 & \leq r(t) \\
 t_0 & \leq t
\end{align*}
\]

© 2011 Peter Van Roy
The “Next Internet Revolution”: Elastic Applications

- The Internet has gone through four revolutions since its inception
 - Each revolution takes about ten years to be internalized
 - Old timers like me saw many of them (I started using it in 1983)
- We are now on the brink of a fifth revolution fueled by elasticity and based on a combination of cloud computing and data-intensive algorithms
 - Applications that use massive resources in short bursts can be run at low cost
 - Large-scale machine learning will be used heavily
Intelligent Applications need Elasticity

Query/use phase
- elastic resource requirements
 - response time constraints

Learning/setup phase
- elastic resource requirements
 - learning time constraints

Tomorrow’s applications

Advanced applications
- Weather forecasting

Standard applications
- Google Search
- Google Translate
- Recommendation sys.
- Speech recognition
- Skype connection
- Social networks
- Media translation

One-shot
- One-way stream
- Conversation

Interactivity (learning + query)

Query/use phase
- elastic resource requirements
 - response time constraints

One-way	
 stream

Conversation

© 2011 Peter Van Roy
An Elastic Application: Real-Time Voice Translation

- The pieces of this application already exist; for example the IRCAM research institute has implemented many of them.
- It requires combining domain knowledge (in sound and language) with an enormous sound fragment database, hosted on a cloud.

(purely hypothetical design!)

- Performance will be gradually improved through feedback from bilingual speakers and speech recognition technology.
- Google is working on this since 2010 (announcement by Franz Och, head of translation services at Google, on Feb. 10, 2010).

© 2011 Peter Van Roy
Some More Applications…

- Real-time audio language translation
 - Google is already working on this (announced Feb. 2010)!
 - Full media interchangeability (text, audio, image, video)

- Knowledge extraction from raw data
 - A huge amount of raw data already exists in digital form: 1.2×10^{21} bytes (2010)
 - Learning algorithms based on large corpora, inferencing, and canonical forms

- Expert guidance (a form of augmented reality)
 - Guiding humans interactively in real time to perform expert tasks
 - For example, anyone can become an expert car mechanic

- Creative problem solving (tamed brute force search)
 - Combining information to provide useful solutions to human-specified problems
 - The exponential search is tamed by learning algorithms

- Continuous fluid interaction
 - No detours through WIMP GUIs; direct interaction with detailed immersive reality
 - Not programmed, but learned by example and user feedback
Agents, Mobile Devices, Context Awareness, Adaptation, Intelligence, Control, and Decision-making

Kendall E. Nygard
North Dakota State University
Wireless connections will more than double to 3 billion+ in about 2 years!
The Application-Centric View

• The predominant approach by companies selling apps
• Apps are not normally aggregated
• When people work, considerable shifting among apps is often necessary
• Extensive personalization is called for
Personalization

• Gear the user experience toward how people use devices versus rather than around an app
• Smarter devices
• Engage ecosystems of knowledge
• Device synchronization
• App aggregation (e.g., flights, transportation options, hotels, entertainment, dining, online-payments, local information)
SmartPhones Allegiance

- 75% fall asleep with their phone
- 69% are more likely to leave their wallet behind than their phone
- 41% said that losing their phone would be tragic
- 30% regard the iphone as their “doorway to the world.”
- 25% regard the iphone as “dangerously alluring”
More SmartPhone Allegiance

• 9% have patted their phone
• 3% let nobody else touch their phone
• 3% have named their phone
• 8% of Iphone users thought that their Ipod was jealous of their iPhone
• Many want to be Buried with their Smart Phone when they Die
Reactiveness and Directedness

Reactiveness is achieved by a set of behaviors

Directedness identifies and exploits structure, maintains a knowledge base, and accesses system knowledge to advantage
Personalization using Agents for...

- Monitoring resources
- Aggregate apps
- Managing context
- Initiating configurations of other agents
- Match and adapt content and logic from remote services
- Learn and anticipate
- Manage concurrency
- Monitoring the user profile/preferences
- Synchronizing protocols for inter-agent communication and consultation
- Negotiating conflicts among agents
- Managing and customizing user interaction
- Adapting the interface to the device
- Balance local autonomy with global consistency and control via remote services
- Synching with laptop, notebook, or other devices
- Managing policies
- Integrating geolocation
- Providing security