HKUST-KAUST Global Collaborative Research Program

Microbial community structure and function of two deep-sea brine pools from the Red Sea

Hong Kong University of Science & Technology

Section 4

Pei-Yuan OIAN-

Deep-sea hydrothermal systems

- In 1977: 1st black smokers at East Pacific Rise (Galapagos Rift) by Jack Corliss of Oregon State U boarded on Alvin of WHOI;
- Average depth: 2100 m along Atlantic, Pacific ridges;
- Deepest: 5000 m in Caymen trough;
- > 1979: 1st observation of deep sea vent communities by WHOI;
- > 1979: 1st publication on hydrothermal vent life by Peter Lonsdale;
- > 1 ounce of tubeworm contains 285 billion bacteria;
- 2005: 1st discovery of a phototrophic bacterium at 2500 m in Mexico black smoker
- 2005: Neptune Resources NL gained right to explore
 35000 km2 in Kermadec Arc (lead-zinc-copper sulfides)
- Clue of origin of life, mineral resources.....

What is the range of global seafloor spreading rate?

Deep-sea brine pools in Red Sea

Red Sea Brine Pools

- > 1949: 1st discovery of hot brines
- 1960s: Confirmation
- 25 brine pools (Degens et al 1969, Pautot et al 1984...)
- Numerous geological and geochemical survey of the brine pools since 60's (Faber et al 1998, Swallow and Crease 1965...)
- A novel genus had been isolated in Atlantis II brine pool (Fiala et al. 1990)
- No information on microbial community structures (particular in-depth analysis)

Red Sea Brine Pools

- Two connected pools (brine flow over each other, Neumann & Chave 1965)
- Parallel change in andydrite content in sediment pore water (Monnin & Ramboz 1996)
- Separated by a hill at 1950 m (50 m above brine, Ross & Hurt 1969)
- ABP temp increased substantailly when DBP unchanged (Hartmann et al 1998)
- CH4 in ABP is 4 time higher than in DBP (Faber et al 1998)
- Higher Fe, Mn, Li, Zn (Gurvich 2006)
- 3 Convective layers in ABP but 1 in DBP (Blanc & Auschutz 1995)

Gradually increasing temperature in Atlantis II lower layer

Little difference in temperature in early 20th century suggests similarity in bacterial communities colonizing the two deeps in the past; temperature increased from 56°C in 1966 to 68°C in 2008

Ecological features Atlantis II and Discovery brine pools

- Extremely high salinity 255 psu
- High temperature (ABP: ~68°C; DBP: ~44 °C)
- High metal contents
- Low nutrient contents
- High ammonia and methane concentrations
- Anaerobic

Objectives

Using pyrosequencing technique to study microbial metagenomics of two brine pools with contrasting environmental conditions

- Determine community diversity in terms of species, genes, and pathways
- Understand the possible functions of microbes in the ecosystems
- Study the adaptive mechanisms of microbes in extreme environment

Oceanus cruise in October 2008Aegaeo cruise in April 2010

Sampling Sites of first cruise

Location	Depth (m)	Amount collected	
Reference site	50	4L	
21°26.07' N, 38°07.35' E	1500	4L	
	200	4L	
	700	4L	
	20	4L	
Atlantis II	20 & 50	4L each depth	
21°20.63' N, 38°04.61'E	1500	4L	
	200	4L	
	700	4L	
	>2100 (brine pool)	100L	
	>2100 (brine pool)	20L	
	Gravity core	2.25m core	
Discovery	20 & 50	4L each depth	
21°16.96'N, 38°02.97'E	1500	4L	
	200	4L	
	700	4L	
	>2100 (brine pool)	100L	

Environmental factors

Microbial communities revealed by pyrosequencing of 16S rDNA amplicons

- Samples included seawater from water columns at different depths and brine water from brine pools
- DNAs were extracted from microbial cells and amplified by universal primers targeting V3 region of bacterial and archaeal 16S rDNA
- Primers for each sample were tagged with a 6nucleotide barcode, which differentiates different samples in a single run
- Barcoded amplicons were sequenced on a 454 platform
- ~330,000 high quality reads from 454 platform (>92%)

Classification using RDP classifier

Water column overlying the brine pools

A200m D200m A1500m D1500m

A20m D20m

A 50m

D50m

Both dominated by Actinobacteria, Fimicutes, Protobacteria, Cyanobacteria *Threshold similarity 50%*

Number of useful reads & diversity index

	Archaea			Bacteria				
	Reads	ΟΤυ	ACE	Chao1	Reads	ΟΤυ	ACE	Chao1
A20m	13294	966	1919	1866	16822	847	1607	1533
A50m	13293	1078	2280	2073	17486	1087	1663	1685
A200m	4234	384	807	699	10019	684	1034	1026
A1500m	5245	578	1452	1269	6943	646	924	916
D20m	7664	494	1071	1056	11671	341	532	539
D50m	18647	448	855	875	18864	839	1218	1220
D200m	7032	407	798	785	13723	704	993	1022
D1500m	10359	561	1034	977	12418	850	1148	1181
АВР	13968	164	487	382	6208	418	638	600
DBP	6188	502	920	961	6163	438	764	771
Total	99924				120317			

A: Atlantis II; D: Discovery; BP: Brine Pool OTU, ACE & Chao1 are calculated at 3% dissimilarity

Comparison of similarity of microbial communities among different samples

Key findings

- Vertical stratification of archaeal and bacterial communities but horizontal homogeneity were observed along the water columns;
- The two brine pools harbored diverse archaeal and bacterial communities in which Euryarchaeota, Actinobacteria, Firmicutes and methanogens were dominant;
- Cyanobacteria were observed in the deep sea and brine pools of the Red Sea.
 - * Qian et al, ISME J (2011)

Metagenomic analysis of microbial communities in brine pools

Objectives

- To fully characterize the diversity of microbes in the brine water samples and sediment samples;
- To understand the important ecological functions in these systems

	Atlantis II brine water	Discovery brine water		
Raw read (bp)	991,000	915,000		
Contigs (bp)	12,003	88,413		
Longest contig (kbp)	92.6	30.7		

Metagenomes and adaptation strategies

Effective genome size in ABP (7.3MB) is 2X big as in DBP (3.4MB)

- Substantial divergence in functional profiles, highlighted
 by different abundances of genes involved in ion transpor, signal conduction, transcription.... In ABP;
- Also enriched reads in chemotoxis, osmotic adjustment, capsule synthesis regulation in ABP

Environmental changes drive compositional shifts of microbial communities and genomic modifications (revealed by 16s)

Comparison of COG genes

 Abundant COG genes in Atlantis II and Discovery Deeps were compared to GOS references

473 COG genes

GOS33: Surface hypersaline water (37°C), Galapagos island GOS17: Caribbean surface sea water (27°C) GOS30: Depth 19m, warm seep (27°C), Galapagos island

Wang et al, under review

COG ID	Function
COG0370	Ferrous iron transport protein B
COG0474	P-type ATPase, Mg2+ ATPase transport protein
COG2217	Heavy metal translocating P-type ATPase
COG0715	Putative periplasmic protein
COG1116	ABC type transporter ATPase component: NitT family
COG3696	Probable cation efflux system transmembrane protein
COG1230	Cobalt-zinc-cadmium efflux permease

Hot COG genes revealed in ABP and DBP are related with inorganic ion transport and metabolism

Number of reads/effective genome for ABC transporter genes

Substance	KEGG ID	Protein	ABP	DBP
Iron(III)	K02012	AfuA	1.50	0.53
	K02011	AfuB	0.59	0.35
	K02010	AfuC	0.31	0.26
Iron complex	K02016	FhuD	0.59	1.23
	K02015	FhuB	0.46	1.12
	K02014	FhuA	11.4	1.1
	K02013	FhuC	0.17	1.34
Nickel	K02008	CbiQ	0.02	0.57
	K02006	CbiO	0.02	0.86
Phosphate	K02040	PstS	0.65	1.06
	K02037	PstC	0.26	0.88
	K02038	PstA	0.19	0.80
	K02036	PstB	0.26	1.16
Sulfate	K02061	Unnamed	0.15	0.79
Sulfonate/nitrate	K02051	SsuA	3.80	1.58
/taurine	K02050	SsuC	3.15	1.08
	K02049	SsuB	3.30	1.26

Comparison of KEGG pathways (Wang et al., ISME J in press)

KEGG maps showing a significant difference in completeness

Aromatic compounds identified in the ABP and other compounds identified from the Atlantis II

250

320

зġп

Key findings

- Atlantis II and Discovery Deeps displayed unique ecological functions, which were also drastically different from other habitats;
- Microbes in Atlantis II brine pool actively involve in consumption of aromatic compounds;
- Microbes in the Atlantis II brine pool own more genes responsible for coping with the high metal concentrations;
- Better understanding of the ecosystem dynamics, microbial function and evolution required further cruises.

Wang et al, ISME J in press

Second cruise focusing on Atlantis II and Discovery Deeps

Environmental parameters

Unpublished data which have been removed from this posting file

Archaeal orders in the Deeps

RDP classification of 16S amplicons:

Unpublished data which have been removed from this posting file

NDW: Deepsea water; BWI: Interface; UCL: Upper layer; MCL: Middle layer; LCL: Lower layer

Bacterial orders in the Deeps

RDP classification of 16S amplicons:

Unpublished data which have been removed from this posting file

Species Diversity

Unpublished data which have been removed from this posting file

UniFrac PCA plots of bacterial and archaeal communities

Bacteria

Archaea

Unpublished data which have been removed from this posting file

High diversity at the bottom layers of the two brine pools

Carbon and Nitrogen concentrations in brine water of Atlantics II

Unpublished data which have been removed from this posting file Nitrogen content in Discovery and Atlantis II Deeps

Unpublished data which have been removed from this posting file

amoA gene is a popular functional marker for nitrification

Unpublished data which Archaea have been removed from this posting file amoA gene phylogeny tree

> Unpublished data which have been removed from this posting file

Key findings

Metagenomic analysis of microbial communities in sediment

- A 2.25m long sediment core was obtained from the Atlantis II Deep
- DNAs from five selected layers (12cm, 63cm, 105cm, 183cm and 222cm) were extracted, amplified with WGA and sequenced on a 454 platform

Metal concentration of sediment from ABP

Chemical analysis

Pyrosequencing reads

Stratified microbial communities and metabolism activities

Large number of genes with unknown functions in sediments

--A long way to go when it comes to understand this special ecosystem

Carbon and Nitrogen concentrations

Main players of nitrogen cycle

> Nitrogen-fixing bacteria.

Nitrogen gas (N₂) to ammonia (NH₄) (Functional gene: *nifH*)
nifH gene in Bradyrhizobium was found in the sediment layers

Nitrifying bacteria

- Ammonium (NH₄) to nitrites (NO₂₋); nitrites (NO₂₋) to nitrates (NO₃₋)
- **Functional genes:** *amoA*; *hao* were not found in the sediments
- Ammonia oxidization mechanism is unknown, possibly involved in metal oxides

Denitrifying bacteria

- \blacktriangleright Nitrates (NO₃₋) to nitrites (NO₂₋) and then to nitrogen gas (N₂)
- Functional gene: *nirS* was not found; nirK gene (Cu-dependent) was identified in the sediments

Conclusions

- Two brine pools in the Red Sea have drastic differences in environmental setting;
- Microbial community (bacteria & archaea) in two brine pools are substantial different from each other, and distinct from overlying water column – strong biological evidence of separation of two brine pools;
- Functional groups of microbes are substantially different and appears to reflect adaptive shift to cope with environmental changes.
- A thorough understanding of these ecosystems requires substantial future effort.

Acknowledgment

Funding support: KAUST Global Collaborative Research Program

Cruise support: WHOI and HCMR of Greece;

Bench work and data analysis: Drs. OO Lee, Y Wang, JK Yang, F Lafi, GS Zhang, T Wong, G Chung...

Organization of this conference for invitation

Thank You!

162

Marine Laboratory