A Model Human Cochlea

Designing and Experiencing Audio-Tactile Displays

Centre for Learning Technologies
Ryerson University, Toronto
Maria Karam @ ryerson.ca

ACHI 2010
Music in Film
Inclusive Design

- Deaf and hard of hearing viewers
 - No access to music
 - Unlike speech, music is often indicated as symbols
- Valuable information is lost
- Experience is degraded
- ASID attempts to address these problems
Crossmodal Displays

- Presenting information intended for one modality using the perceptual channel of another.
Sensory Substitution

- Translate, interpret, transform, or otherwise map characteristics of one sensory modality onto another.
Parameters

Form factor: Chair

Tactile Perception

Tactile devices
Mapping Modalities

- Audio perception: 20Hz – 20kHz
- Tactile perception: 10Hz – 1000Hz
- Can't alter original music without first understanding emotional content
- Need vibrotactile device that can handle music
- Piano music (orchestra): 27-4100Hz
- Music is not only pure tones: timbre, harmonics...
- Psychophysics focus on single-point contact
- Ambient experience not primary information comprehension
Issues

- Audio perception: 20Hz – 20kHz
- Tactile perception: 10Hz – 1000Hz
- Can't alter original music without first understanding emotional content
- Need vibrotactile device that can handle music

- Piano music (orchestra) 27-4100Hz
- Music is not only pure tones: timbre, harmonics...
- Psychophysics focus on single-point contact
- Ambient experience not primary information comprehension
Voice Coils

Pros:

- Offer complete set of vibrations from the music
 - Speakers used in night clubs for deaf communities to provide musical vibrations for dancing
- Do not require alteration of audio signal to cause vibrations
- Low cost vibrotactile devices
- Presents entire audio signal

Cons

- Only most prominent frequencies can be detected
- May be fragile for prolonged use
- Little knowledge about vibrotactile properties
How do we model this sensory substitution?

Consider human hearing as a model

Found the following:
Human Cochlea Model

- **A**
 - cochlear duct
 - 20,000 Hz
 - 10,000 Hz
 - 7,000 Hz
 - 5,000 Hz
 - 2,000 Hz
 - 1,500 Hz
 - 600 Hz
 - 400 Hz
 - 200 Hz

- **B**
 - basilar membrane
 - base
 - apex
 - high-frequency waves (1,500–20,000 Hz)

- **C**
 - basilar membrane
 - base
 - apex
 - medium-frequency waves (600–1,500 Hz)

- **D**
 - basilar membrane
 - base
 - apex
 - low-frequency waves (200–600 Hz)
Model Human Cochlea (MHC)
Sensory Substitution Models

- Separating the audio signal into multiple vibrotactile devices

- Two models:
 - Track Model
 - Frequency Model
Track Model

- Requires source separation
 - Instruments represent individual signals
 - Intuitive approach

- MIDI
 - facilitates the separation of instruments into different tracks

- Problem: number of instruments do not always map onto number of speakers
 - Can't always access tracks from existing music
Frequency Model

- Separate audio signal into unique frequency bands
Approximate Frequency Ranges

Fundamental Frequencies	Harmonics
30 Hz | 90 Hz | 160 Hz | 300 Hz | 500 Hz | 900 Hz | 1.6 kHz | 3 kHz | 5 kHz | 9 kHz | 16 kHz

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Fundamental</th>
<th>Harmonics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piano</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe Organ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bass Viola</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Violin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cello</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contra Bassoon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bassoon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarinet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oboe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piccolo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bass Tuba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French Horn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trombone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trumpet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tympani</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snare Drum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cymbals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male Voice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female Voice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prototype 0, 1
Prototype 2.0
Physical Considerations

How the Deaf “Hear” Music

A new chair allows the deaf to experience music through vibrations.

Human Cochlea
- The cochlea is the main organ that allows a hearing person to process different frequencies of sound.
- High-frequency waves: 1,500-35,000 Hz
- Medium-frequency waves: 600-1,500 Hz
- Low-frequency waves: 0-400 Hz

Emoti-Chair
- This research turns the human body into a cochlea by directing different frequency levels of sound to different parts of the back.
Tactile Music Perception

- **Mechanoreceptors:**
 - Sensors on the skin:
 - Most located in the non-hairy (glabrous) skin
 - Pacinian -> fast vibrations
 - Meissner -> texture changes
 - Merkel -> sustained touch
 - Ruffini -> tension
 - Hair cells (cochlea) -> air pressure waves
 - Most sensitive mechanoreceptor
Optimal Placement of Sound on Skin

- Higher frequencies require more sensitivity
- Fingertips, palms, feet, lips...and other glabrous skin most sensitive to vibrations
 - Locate highest frequencies where skin is most sensitive
 - Lowest frequencies do not need high sensitivity skin
Hands on session begins!