Challenges in Dedicated Software Engineering: Software Engineering for Management

Luigi Lavazza
Dipartimento di Informatica e Comunicazione
Università degli Studi dell'Insubria
Varese, Italy
Motivations

Software size measurement continues to be a significant practical problem in software engineering. Without a solid baseline of size neither estimation and planning nor control for large scale software projects is possible. As a result, estimation errors are reported to be essential causes of poor management.

incipit from

Motivations

Being able of successfully developing software does not require only to know development techniques, methodologies, tools, etc.

You must be able to produce software of the required quality in convenient time and at reasonable costs.

From the presentation of my course on Software project management.
Motivations

Cost and schedule overruns occur quite frequently in the software industry and are a primary cause of project failures.

Only 9% of projects in large companies were successful. At 16.2% and 28% respectively, medium and small companies were somewhat more successful. A whopping 61.5% of all large company projects were challenged compared to 46.7% for medium companies and 50.4% for small companies. The most projects, 37.1%, were impaired and subsequently cancelled in medium companies, compared to 29.5% in large companies and 21.6% in small companies.

Opinions about why projects are impaired and ultimately cancelled

<table>
<thead>
<tr>
<th>Project Impaired Factors</th>
<th>% of Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Incomplete Requirements</td>
<td>13.1%</td>
</tr>
<tr>
<td>2. Lack of User Involvement</td>
<td>12.4%</td>
</tr>
<tr>
<td>3. Lack of Resources</td>
<td>10.6%</td>
</tr>
<tr>
<td>4. Unrealistic Expectations</td>
<td>9.9%</td>
</tr>
<tr>
<td>5. Lack of Executive Support</td>
<td>9.3%</td>
</tr>
<tr>
<td>6. Changing Requirements & Specifications</td>
<td>8.7%</td>
</tr>
<tr>
<td>7. Lack of Planning</td>
<td>8.1%</td>
</tr>
<tr>
<td>8. Didn't Need It Any Longer</td>
<td>7.5%</td>
</tr>
<tr>
<td>9. Lack of IT Management</td>
<td>6.2%</td>
</tr>
<tr>
<td>10. Technology Illiteracy</td>
<td>4.3%</td>
</tr>
<tr>
<td>Other</td>
<td>9.9%</td>
</tr>
</tbody>
</table>

Hardly any technical motivation!
ICT evolution is mostly here

SW development

SW project management

But it is here that improvements are needed!
We have specific techniques here as well.

ICT evolution is mostly here.

SW project management

Not enough!

What opportunities are there for improving the integration of development and management?
Communication

SW project management

SW development

Product Measures
Size estimation
Size implemented
Released size
Defects
...

Process Measures
Duration
Costs
Productivity
Number of activities started, repeated, finished, ...

"SW development"
Control

SW project management

SW development

Plans
Corrective actions
Change control
...

ICSEA 2010 - Nice, August 22-26, 2010
Here we have to keep track of changes, versions, etc.
Opportunities

SW project management

SW development

Improve communication
Improve coordination
Improve control
The current situation

Software Development

Planning

Plan

Monitoring and control

Updated plans

Advancement

LOCs

Function Points

Size & NFR

Requirements

Code

Implementation

SW project Management
Problems with the current situation

It is often difficult to relate advancements to requirements.

Changes in requirements are not always properly modeled and sized.

Differences between versions are usually not properly sized.

- **Monitoring and control**
 - Advancement
 - Updated plans

- **Code**
 - Implement

- **Software Development**
 - Requirements
 - Size & NFR

- **Software project Management**
 - Function Points
 - LOCs
Changes in requirements are not always properly modeled and sized

- New reqs.
- Modified reqs.
- Deleted reqs.

Size of changes

Replanning

This is what should happen

Problem: classifying and sizing the requirements changes require time and effort.
Consequence: changes are dealt with directly in the implementation
Problems with the current situation (2)

- It is often difficult to relate advancements to requirements:
 - Advancements are measured in LOC, requirements are measured in Function Points.
 - Relating a piece of code to a piece of requirement calls for traceability.
 - Proper versioning is required.
 - Measuring size in LOC is easy (thus it is often done) but is not sufficient. Additional measures are needed to support management:
 - How much has been the code reviewed?
 - How much has it been tested?
 - What is its McCabe complexity and what is the coverage of tests?
 - How many defects were found?
 - How much effort did it require?
 - …
Differences between versions are usually not properly sized

- Very often, the “advancement” is measured as the total lines of code accumulated to date.
- Sometimes the data are not available at the file granularity.
- When data are available at the file granularity, it is usually not known what are the differences between two subsequent versions.
 - E.g., the files are measured once a month, but in a month several independent changes (typically related to different requirements) are applied to the file.
- Very seldom you have data on the lines added, deleted or modified.
So, what do we need?

- Homogeneous representations of artifacts in requirements management and development; homogeneous measures.
- Configuration management applied to all the software artifacts; traceability.
- A sort of “semantic” configuration management. The entities and relationships being versioned are typed. Intelligent behavior can be associated to changes.
- Historical data. Everything should be measured and recorded.
Homogeneous representations of artifacts in requirements management and development; homogeneous measures.

These objectives can be achieved by promoting the use of models.

Up to now, modeling has been seen as a tool for supporting development (see MDA).

But models can be used to support management too!
- Good models make measurement easier and more reliable
- Models favor the representation of relationships and dependences
- Models can be used in any phase of the development process.
Promoting the use of models (1)

Technique: problem frames
Language: UML
Principle: W,S → R; P,C → S

The user view
The responsibilities of SW
The design artifacts and the code

Software Development

Reqs Models → Specs Models → Design & Code

Consistency is maintained!
Measures

- The final target is satisfying the requirements.
- The measure of the requirements quantifies the goal.
 - Technique: Measurement-oriented modeling & model based measurement
- The measure of advancement is given by the percentage of model that has been implemented
 - Technique: SCM applied to the mentioned models and their relations
Dealing with changes

- All changes produce new versions.
- New versions are properly interrelated (using also the relations of the previous versions)
- The representation of dependencies is favored by the homogeneity of the notation
 - E.g., a class that represents information relevant to the user in the model of requirements is likely to correspond to a similar class in the model of design.
- If the elements of the models are properly typed, it is easy to characterize the changes
 - E.g., a class diagram is changed in terms of classes added/modified/deleted; a class is changed in terms of attributes, operations and relations added/modified/deleted, etc.
Process measures

- Development activity are measured in terms of
 - Volume of change
 - Effort spent
 - …

- Moreover, they are classified in terms of goal
 - Implementing a requirement
 - Implementing a required change
 - Correcting a defect
 - …

- Used in conjunction with product measures, they provide correct productivity measures
 - E.g., how much effort is required for performing a change of a given type to achieve a goal of a given size on a piece of product having given size, complexity, etc.
Planning, monitoring and control

A homogeneous set of measures is used throughout the process.

Including earnings and costs.

Updated plans.

Software Development

Development

Reqs Models

Specs Models

Design & Code

SW project Management

Current process and product data

Historical process and product data
What about the upper management?

- Software is typically functional to some other type of business
- How can we relate the management of software to the management of the “core” business of a company?
Requirements and artifacts hierarchy

Measures of Business Models

Measures of Reqs Models

Measures of Specs Models

Measures of Design & Code

Business Models

Reqs Models

Specs Models

Design & Code

W,R → BG

W,S → R

P,C → S
Further promoting the use of models

Planning, monitoring and control
(including strategic planning & control, and global performance assessment)

SW requirements are explicitly linked to business goals [2]

Measures of the SW process and products are linked to the measures of business-level measures [1]

Conclusion

- We can define SE practices that are not functional just to software development (i.e., to technical tasks) but also to management.
- The management and SW development process are deeply intertwined.
- Software requirements, specifications and artifacts are linked to business rules, constrains and goals.
- A uniform set of models can help defining, understanding and quantitative-based managing the whole process.

- The good news: the needed techniques exist. We just have to use them!