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Introduction Motivations

Why an intrusion detection system?

@ Network security mainly means PREVENTION
Physical protection for hardware

Passwords, access tokens, etc. for authentication
Access control list for authorization

Cryptography for secrecy

Backups and redundancy for authenticity

...and so on

... Absolute security cannot be guaranteed! I
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Introduction Motivations

What is an Intrusion Detection System?

@ Prevention is suitable when

o Internal users are trusted
o Limited interaction with other networks

@ Need for a system which acts when prevention fails

Intrusion Detection System

An intrusion detection system (IDS) is a software/hardware tool
used to detect unauthorized accesses to a computer system or
a network
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Introduction Motivations

A taxonomy of the intruders

Intruders can be classified as

@ Masquerader: an individual who is not authorized to use
the computer and who penetrates a system’s access
control to exploit a legitimate user’s account

@ Misfeasor: a legitimate user who accesses data,
programs, or resources for which such access is not
authorized, or who is authorized for such access, but
misuses his/her privileges

@ Clandestine User: an individual who seizes supervisory
control of the system and uses the control to evade
auditing and access controls or to suppress audit collection
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Introduction Motivations

A taxonomy of the intrusions

Intrusions can be classified as

@ Eavesdropping and Packet Sniffing: passive interception of
network traffic

@ Snooping and Downloading

Tampering and Data Diddling: unauthorized changes to data
or records

Spoofing: impersonating other users
Jamming or Flooding: overwhelming a system’s resources
Injecting Malicious Code

Exploiting Design or Implementation Flaws (e.g., buffer
overflow)

Cracking Passwords and Keys
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Introduction IDS Taxonomy

IDS Taxonomy

Intrusion Detection Systems are classified on the basis of
several criteria:
@ Scope

o Host IDS (HIDS)

o Network IDS (NIDS)
©Q Architecture

o Centralized

o Distributed
©Q Analysis Techniques

o Stateful

o Stateless
© Detection Techniques

o Misuse Based IDS
e Anomaly Based IDS
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Introduction IDS Taxonomy

Host based vs. Network based

Host based IDS
@ Aimed at detecting attacks related to a specific host
@ Architecture/Operating System dependent
@ Processing of high level information (e.g. system calls)
o Effective in detecting insider misuse

y

Network based IDS

@ Aimed at detecting attacks towards hosts connected to a
LAN

@ Architecture/Operating System independent
@ Processing data at lower level of granularity (packets)
o Effective in detecting attacks from the “outside”
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Introduction IDS Taxonomy

Centralized IDS vs. Distributed IDS

Centralized IDS

@ All the operations are performed by the same machine
@ More simple to realize
@ Only one point of failure

v

Distributed IDS

@ Composed of several components

@ Sensors which generate security events
@ Console to monitor events and alerts and control the sensors
@ Central Engine that records events and generate alarms

@ May need to deal with different data formats
@ Need of a secure communication protocol (IPFIX)
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Introduction IDS Taxonomy

Stateless IDS vs. Stateful IDS

Stateless IDS

@ Treats each event independently of the others
@ Simple system design
@ High processing speed

Stateful IDS

@ Maintains information about past events

@ The effect of a certain event depends on its position in the
events stream

@ More complex system design
@ More effective in detecting distributed attacks
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Introduction IDS Taxonomy

Misuse based IDS vs. Anomaly based IDS

Misuse based IDS

@ Identifies intrusion by looking for patterns of traffic or of
application data presumed to be malicious

@ Pattern of misuses are stored in a database
o Effective in detecting only “known” attacks

v

Anomaly based IDS

@ |dentifies intrusions by classifying activity as either
anomalous or normal

@ Needs a training phase to recognize normal activity
@ Able to detect “new” attacks
@ Generates more false alarms than a misuse based IDS
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Introduction IDS Taxonomy
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Introduction IDS Taxonomy

IDS State of the Art

@ Focus is on Network based IDSs (The only ones effective
in detecting Distributed Denial of Service - DDoS)

o State of the art IDSs are Misuse Based

o Most attacks are realized by means of software tools
available on the Internet
@ Most attacks are “well-known” attacks

... The most dangerous attacks are those written
ad hoc by the intruder!
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Introduction IDS Taxonomy

The best choice?

@ Combined use of both
o HIDS (for insider attacks) & NIDS (for outsider attacks)
o Misuse IDS (low False Alarm rate) & Anomaly IDS (for
“new” attacks)
o Stateless IDS (fast data process) & Stateful IDS (for
“complex” attacks)
@ Distributed IDS

o Not a single point of failure
o More effective in monitoring large networks
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Introduction IDS Taxonomy

The best choice?
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Introduction Some Useful Definitions

Definitions

o False Positive (FP): the error of rejecting a null hypothesis
when it is actually true. In our case it implies the creation of
an alarm in correspondence of normal activities

@ False Negative (FN): the error of failing to reject a null
hypothesis when it is in fact not true. In our case it
corresponds to a missed detection
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Introduction Some Useful Definitions

ROC Curve

Plots Detection Rate vs. False Positive Rate
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Introduction Some Useful Definitions

ROC Curve

Results presented by the ROC are often considered incomplete
because

@ they do not take into account the cost of missed attacks
@ they do not take into account the cost of false alarms

@ they do not say if the system itself is resistant to attacks
o ...

Several researchers are working on more complete ways of
representing the results
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Introduction Evaluation Data-set

DARPA Evaluation Program

@ The 1998/1999 DARPA/MIT IDS evaluation program is the
most comprehensive evaluation performed to date

@ It provides a corpus of data for the development,
improvement, and evaluation of IDSs
@ Different kind of data are available:

o Operating systems logs
o Network traffic

@ Collected by an “inside” sniffer
@ Collected by an “outside” sniffer
@ The data model the network traffic measured between a
US Air Force base and the Internet
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Introduction Evaluation Data-set

The DARPA Network
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Introduction Evaluation Data-set

The DARPA Dataset

@ 5 weeks data

o Data from weeks 1 and 3 are attack free and can be used
to train the system

o Data from week 2 contains labeled attacks and can be used
to realize the signatures database

o Data from weeks 4 and 5 contains several attacks and can
be used for the detection phase

@ An Attack Truth list is provided

@ Attacks are categorized as

o Denial of Service (DoS)
e User to Root (U2R)

o Remote to Local (R2L)
o Data

o Probe

@ 177 instances of 59 different types of attacks
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Introduction Evaluation Data-set

Other Data-sets

The DARPA data-set has many drawbacks:
@ simulated environment
@ not up-to-date traffic

@ the methodology used for generating the traffic has been
shown to be inappropriate for simulating actual networks

Other Data-sets:
@ several publicly available traffic traces
@ e.g. CAIDA, Abilene (Internet2), GEANT, ...
@ no ground truth is provided!
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Introduction Evaluation Data-set
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Introduction Evaluation Data-set

References

@ MIT, Lincoln laboratory, DARPA evaluation intrusion
detection, http://www.ll.mit.edu/IST/ideval/

@ R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das ,
The 1999 DARPA off-line intrusion detection
evaluation, Computer Networks 34, 2000

@ J. Haines, R. Lippmann, D. Fried, E. Tran, S. Boswell, and
M. Zissman , 1999 DARPA intrusion detection system
evaluation: Design and procedures, Tech. Rep. 1062,
MIT Lincoln Laboratory, 2001

@ J. McHugh, Testing Intrusion detection systems: a
critique of the 1998 and 1999 DARPA intrusion
detection, ACM Transactions on Information and System
Security 3, 2000

@ Christian Callegari, Stefano Giordano, Michele Pagano,
New Statistical Approaches for Anomaly Detection,
Security and Communication Networks, to appear

C. Callegari Anomaly Detection 28/169
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A bit of History

The history of IDSs can be split in three main blocks
@ First Generation IDSs (end of the 1970s)

o The concept of IDS first appears in the 1970s and early
1980s (Anderson, Computer Security Monitoring and
Surveillance, Tech Rep 1980)

e Focus on audit data of a single machine

o Post processing of data

@ Second Generation IDSs (1987)

o Intrusion Detection Expert System (Denning, An intrusion
Detection Model, IEEE Trans. on Soft. Eng., 1987)

o Statistical analysis of data

© Third Generation IDSs (to come)
Focus on the network
o Real-time detection
o Real-time reaction
o Intrusion Prevention System
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IDES

Model’s components

@ Subijects: initiators of activity on a target system

@ Objects: resources managed by the system files, commands,
etc.

@ Audit Records: generated by the target system in response to
actions performed or attempted by subjects

@ Profiles: structures that characterize the behavior of subjects
with respect to objects in terms of statistical metrics and models
of observed activity

@ Anomaly Records: generated when abnormal behavior is
detected

@ Activity Rules: actions taken when some condition is satisfied

y
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Subjects and Obijects

@ |Initiators of actions on the target system
@ ltis typically a terminal user
@ They can be grouped into different categories

@ Users groups may overlap

Objects

@ Receptors of subjects’ actions

@ If a subject is a recipient of actions (e.g. electronic mail), then is
also considered to be a object

@ Additional structures may be imposed (e.g. records may be
grouped in database)

@ Objects granularity depends on the environment
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Audit Records

{Subject, Action, Object, Exception-Condition,
Resource-Usage, Time-stamp}

@ Action: operation performed by the subject on or with the
object

@ Exception-Condition: denotes which, if any, execution
condition is raised on the return

@ Resource-Usage: list of quantitative elements, where
each element gives the amount of some resource

@ Time-stamp: unique time/date stamp identifying when the
action took place
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IDES
Profiles

@ An activity profile characterizes the behavior of a given

subject (or set of subjects) with respect to a given object,
thereby serving as a signature or description of normal
activity for its respective subject and object

Observed behavior is characterized in terms of a statistical
metric and model

A metric is a random variable x representing a quantitative
measure accumulated over a period

Observations x; of x obtained from the audit records are
used together with a statistical model to determine whether
a new observation is abnormal

The statistical models make no assumptions about the
underlying distribution of x; all knowledge about x is
obtained from the observations x;

C. Callegari
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Metrics and Models

@ Event counter

@ Interval timer

@ Resource measure

Statistical models

Operational model: abnormality is decided by comparison of x, with a fixed
threshold

Mean and standard deviation model: abnormality is decided by checking if x,
falls inside the confidence interval

Multivariate model: based on the correlations between two or more metrics
Markov process model: based on the transition probabilities

Time series model: takes into account order and inter-arrival time of the
observations

C. Callegari
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IDES
Profile structure

{Variable-name, Action-pattern, Exception-pattern,
Resource-usage-pattern, Period, Variable-type, Threshold,
Subject-pattern, Object-pattern, Value}

@ Variable-name

@ Action-pattern: pattern that matches one or more actions in the
audit records (e.g. “login”)

@ Exception-pattern: pattern that matches on the
Exception-condition field of an audit record

@ Resource-usage-pattern: pattern that matches on the
Resource-usage field of an audit record

@ Period: time interval for measurements

@ Variable-type: name of abstract data type that defines a
particular type of metric and statistical model (e.g. event counter
with mean and standard deviation model)

@ Threshold
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IDES
Profile structure

{Variable-name, Action-pattern, Exception-pattern,
Resource-usage-pattern, Period, Variable-type, Threshold,
Subject-pattern, Object-pattern, Value}

@ Subject-pattern: pattern that matches on the Subject field
of an audit record

@ Object-pattern: pattern that matches on the Object field of
an audit record

@ Value: value of current observation and parameters used
by the statistical model to represent distribution of previous
values

There also is the possibility of defining profiles for classes
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IDES
Profile templates

When user accounts and objects can be created dynamically, a
mechanism is needed to generate activity profiles for new
subjects and objects

@ Manual create: the security officer explicitly creates all
profiles

@ Automatic explicit create: all profiles for a new user are
generated in response to a “create” record in the audit trail

@ First use: a profile is automatically generated when a
subject (new or old) first uses an object (new or old)
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IDES
Anomaly Records

{Event, Time-stamp, Profile}

@ Event: indicates the event giving rise to the abnormality
and is either “audit”, meaning the data in an audit record
was found abnormal, or “period”, meaning the data
accumulated over the current period was found abnormal

@ Time-stamp: either the Time-stamp in the audit trail or
interval stop time

@ Profile: activity profile with respect to which the
abnormality was detected
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IDES
Activity Rules

A condition that, when satisfied, causes the rule to be fired, and
a body, which specified the action to be taken

@ Audit-record rule: triggered by a match between a new audit
record and an activity profile, updates the profiles and checks for
anomalous behavior

@ Periodic-activity-update rule: triggered by the end of an
interval matching the period component of an activity profile,
updates the profiles and checks for anomalous behavior

@ Anomaly-record rule: triggered by the generation of an
anomaly record, brings the anomaly to the immediate attention
of the security officer

@ Periodic-anomaly-analysis rule: triggered by the end of an
interval, generates summary reports of the anomalies during the
current period
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IDES
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Statistical Anomaly Detection

e Statistical Anomaly Detection
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Statistical Anomaly Detection

Statistical Approach: Traffic Descriptors

The goal is to identify some traffic parameters, which can be
used to describe the network traffic and that vary significantly
from the normal behavior to the anomalous one

Some examples
@ Packet length
@ Inter-arrival time
@ Flow size
@ Number of packets per flow
@ ...and soon
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Statistical Anomaly Detection

Choice of the Traffic Descriptors

For each parameter we can consider
@ Mean Value
@ Variance and higher order moments
@ Distribution function
@ Quantiles
@ ...andsoon

The number of potential traffic descriptors is huge (some
papers identify up to 200 descriptors)

To identify as few “attack invariant” descriptors as possible to
classify traffic with an acceptable error rate
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Outline

Clustering
@ Clustering
@ Outliers Detection
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Cluster Cluster

Clustering

@ Clustering is the assignment of a set of observations into
subsets (called clusters) so that observations in the same
cluster are similar in some sense

@ Clustering is a method of unsupervised learning

@ The clusters are computed on the basis of a distance
measure, which will determine how the similarity of two
elements is calculated

@ Common distances are:

Euclidean distance
Manhattan distance
Mahalanobis distance
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Cluster Cluster

K-Means Algorithm

The k-means algorithm assigns each point to the cluster whose
center (also called centroid) is the nearest

@ Choose the number of clusters, k

©Q Randomly generate k clusters and determine the cluster

centers, or directly generate k random points as cluster
centers

© Assign each point to the nearest cluster center
©Q Recompute the new cluster centers

©Q Repeat the two previous steps until some convergence
criterion is met (e.g., the assignment hasn’t changed)

C. Callegari
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Cluster Cluster

K-Means Algorithm - An example

Consider k = 2, choose 2 points (centroids), build 2 clusters
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Cluster Cluster

K-Means Algorithm - An example

Compute the new centroids
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Cluster Cluster

K-Means Algorithm - An example

Build the new clusters
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Cluster Cluster

K-Means Algorithm - An example

Repeat last 2 steps, until a assignments don’t change
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Cluster Outliers Detection

Outliers

@ In statistics, an outlier is an observation that is numerically
distant from the rest of the data

@ Detection based on the full dimensional distances between
the points as well as the densities of local neighborhoods
@ There exist at least two approaches

o the anomaly detection model is trained using unlabeled
data that consist of both normal as well as attack traffic

o the model is trained using only normal data and a profile of
normal activity is created
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Cluster Outliers Detection

Outliers Detection - Method 1

@ The idea behind the first approach is that anomalous or
attack data form a small percentage of the total data

@ Anomalies and attacks can be detected based on cluster
sizes

o large clusters correspond to normal data
o the rest of the data points, which are outliers, correspond to
attacks
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Cluster Outliers Detection
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Cluster Outliers Detection
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Outline

e Markovian Models
@ First Order Homogeneous Markov Chains

@ First Order Non Homogeneous Markov Chains
@ High Order Homogeneous Markov Chains
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Markovian Models
State Transition Analysis

@ The approach was first proposed by Denning and
developed in the 1990s.
@ Mainly used in two distinct environment
o HIDS: to model the sequence of system commands used
by a user
o NIDS: to model the sequence of some specific fields of the
packet (e.g. the sequence of the flags values in a TCP
connection)

@ The most classical approach: Markov chains
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Markov Chains and TCP

@ |dea: Model TCP connections by means of Markov chains

@ The IP addresses and the TCP port numbers are used to
identify a connection

@ State space is defined by the possible values of the TCP
flags

@ The value of the flags is used to identify the chain
transitions

@ Avalue S, is associated to each packet according to the
rule

Sp=syn+2-ack+4-psh+8-rst+16-urg + 32 - fin
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Markovian Models First Order Homogeneous Markov Chains

Markov Chain and TCP - Training phase

Calculate the transition
probabilities

aj = P[Qt+1, = jlqt = =
Plg: = i,qt11 = ]
Plg: = 1]

@ Server side
@ 3-way handshake

@ psh flag SSH Markov Chain
@ closing
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Markovian Models First Order Homogeneous Markov Chains

Markov Chain and TCP - Training phase

Calculate the transition
probabilities

aj = Plgr1 =jlgr=1]1= /\.
Plg: = 1]
@ Client side Q

FTP Markov Chain
@ 3-way handshake

@ ack flag
@ closing

C. Callegari Anomaly Detection
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Markovian Models

First Order Homogeneous Markov Chains

Markov Chain and TCP - Training phase

Calculate the transition probabilities

aj = Plgr1 =jlg =1 =

Plgt =i, g1 =]
Pla: = 1]

SSH Markov Chain

2
R:?

SYN

SYN-ACK

\

CK

/

it &8 RE

SYN

W

SYN-ACK

YN

/w

3-Way
Handshake

Syn Flood
Attack
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Markovian Models First Order Homogeneous Markov Chains

Markov Chain and TCP - Detection phase

@ Given the observation (S1, S, -+, St)
@ The system has to decide between two hypothesis

Ho : normal behaviour
Hy : anomaly

@ A possible statistic is given by the logarithm of the
Likelihood Function

T+R

LogLF(t) Z Log(as,s,,,)
t=R-+1

@ Or by its temporal “derivative”

Dy(t) = |LogLF(t Z LogLF(t — i)

i=1
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Markovian Models First Order Homogeneous Markov Chains

Markov Chain and TCP - Detection phase
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Markovian Models First Order Non Homogeneous Markov Chains

Non Homogeneous Markov Chain

@ First order homogeneous Markov chain
P(Ct=s;,|Ci—1 =5;,,Ct—2=5;,,Ct—3 =S}, -) =
P(Ct = ;|Ci—1 = 8;,) = P(Co = 5;,|C-1 = 8,) =
P(sp|si,)

@ First order non-homogeneous Markov chain
P(Ct=s;,|Ct-1=5;,,Ct2=25,,Ct3 =58}, ) =
P(Ct = s;,|Ci—1 = si;) =
Pf(sfolsf1)

@ We build a distinct Markov Chain for each connection step
(first 10 steps)

@ The model should better characterizes the setup and the
release phases
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Markovian Models High Order Homogeneous Markov Chains

High order Markov Chain

@ First order homogeneous Markov chain
P(Ct=s;,|Ct—1 =5;,,Ct—2=5},,Ct_3 =8},---) =
P(Ct = s,|Ct—1 = s;,) = P(Co = 8, |C 1 = s3) =
P(Sio|si1)

@ /" order homogeneous Markov chain
P(Ct = s4|Ct-1=5,,Ct 2=5;,,Ct 3=S5,,---) =
P(Ct =5;|Ci—1=5,,Ct2=8,,---,C_ = 5;) =
P(Co =sy|C-1=5,,C2=s5},,---,C_1=85)) =
P(Sio|s"1 »Sipy 73"1)

@ Some connection phases have dependences, between
packets, of order bigger than 1
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Markovian Models High Order Homogeneous Markov Chains

Mixture Transition Distribution

@ We have an explosion of the number of the chain
parameters, which grows exponentially with the order
(K'(K 1))

@ Parsimonious representation of the transition probabilities

@ Mixture Transition Distribution (MTD) model
(K(IK—=1)+1-1)

!
P(Cz = S,‘O|Ct_1 = Sj, Ct_z =S, ,Ct,/ = S,’,) = Z )\jf(Sio|S,‘/.)

j=1

o where the quantities
R={r(sils); i,j=1,2,--- ,K}and A= {); j=1,2,---,[}

o satisfy the constraints
K

r(sils) = 0; i,j=1,2,--- ,Kand > r(s|s) =1vj=1,2,--- K

Si

=1 |
N>0; =12 1> N=1
j=1
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Markovian Models High Order Homogeneous Markov Chains

State Space Reduction

@ We only consider the states observed during the training
phase

@ We add a rare state to take into account all the other
possible states

@ We fix the following quantities:

r(rare|s;) = € vVi=1,2,--- K

with e small (in our case e = 10~°)

r(sjjrare) = (1 —¢)/(K—1)
Vi=1,2,---  K—1 (2)
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Markovian Models High Order Homogeneous Markov Chains

Parameters Estimation

@ We need to estimate the parameters of the Markov chain
(Maximum Likelihood Estimation - MLE)

@ According to the MTD model, the log-likelihood of a

sequence (c1, Cp, - -+ ,c7) of length T is:
K K i
LL(ci,Co,- - Cr) = Y - > N(Sy, S, ,s,-,)~|og<Z)\,-r(s,-o|s,-/.)>
=1 =1 j=1
where N(s;;, s, - - , ;) represents the number of times

the transition s; — s; , — --- — s;, is observed

@ We have to maximize the right hand side of the equation,
with respect to R and A, taking into account the given
constraints
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Markovian Models High Order Homogeneous Markov Chains

Parameters Estimation

Estimation Steps

@ We apply an alternate maximization with respect to R and
to A

@ In the first step (estimation of A) we use the sequential
quadratic programming

@ The second step (estimation of R) is a linear inverse
problem with positivity constraints (LININPOS) that we
solve applying the Expectation Maximization (EM)
algorithm

Global Maximum

This process leads to a global maximum,
since LL is concave in R and A. |
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Markovian Models High Order Homogeneous Markov Chains

Markov Chains - Detection Phase

@ Choose between a single hypothesis Hp (estimated
stochastic model), and the composite hypothesis H; (all
the other possibilities)

Ho : {(c1,¢2,- -, c1) ~ computed model MCy}
Hi : {anomaly}

@ No optimal result is presented in the literature

@ The best solution is represented by the use of the
Generalized Likelihood Ratio (GLR) test:

Maxy4uL(Ct, Car- -+ , CT|Ay, Ry) Y Ho
X = s £
L(C17025"' aCT|AU7 RU) H,
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Markovian Models High Order Homogeneous Markov Chains

Markov Chains - Detection Phase

@ Equivalent to decide on the basis of the Kullback-Leibler
divergence between the model associated to Hy (MCp) and the
one computed for the observed sequence (MCs)

@ The Kullback-Leibler divergence, for first order Markov chains, is
defined as:
Po(sjlsi
KL (MCy,MCs) = ZZ m0(s7)Po(sjlsi) log o(sjlsi)
o, Ps(sjlsi)

o

where mo(s;) is the stationary distribution of MCo and Px(sj|s;) is
the (single step) transition probability from state C;_y = s; to
state C; = s;

Extension to Markovian models of order /

The state of the chain C; has to be considered as a point in a finite
I-dimensional lattice:
CY = (Cfv Ct—1 79099 Ct—/+1)
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Markovian Models High Order Homogeneous Markov Chains

Non-Homogeneous Markov Chain
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Markovian Models High Order Homogeneous Markov Chains

High Order Markov Chain
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Markovian Models High Order Homogeneous Markov Chains
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Entropy

Outline

e Entropy-based Methods
@ Entropy
@ Compression Algorithms
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Entropy Entropy

Theoretical Background

Entropy

The entropy H of a discrete random variable X is a measure of
the amount of uncertainty associated with the value of X
Referring to an alphabet composed of n distinct symbols,
respectively associated to a probability p;, then

n
H=—>"p;- logep; bit/symbol

i=1

The starting point

The entropy represents a lower bound to the compression rate
that we can obtain: the more redundant the data are and the
better we can compress them.
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Entropy Compression Algorithms

Compression Algorithms

@ Dictionary based algorithms: based on the use of a
dictionary, which can be static or dynamic, and they code
each symbol or group of symbols with an element of the
dictionary

o Lempel-Ziv-Welch (LZW)

@ Model based algorithms: each symbol or group of
symbols is encoded with a variable length code, according
to some probability distribution.

e Huffman Coding (HC)
e Dynamic Markov Compression (DMC)
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Entropy Compression Algorithms

Lempel-Ziv-Welch

@ Created by Abraham Lempel, Jacob Ziv, and Terry Welch.
It was published by Welch in 1984 as an improved
implementation of the LZ78 algorithm, published by
Lempel and Ziv in 1978

@ Universal adaptative' lossless data compression algorithm

@ Builds a translation table (also called dictionary) from the
text being compressed

@ The string translation table maps the message strings to
fixed-length codes

'The coding scheme used for the k™ character of a message is based on
the characteristics of the preceding k — 1 characters in the message
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Entropy Compression Algorithms

Huffman Coding

@ Developed by Huffman (1952)

@ Based on the use of a variable-length code table for
encoding each source symbol

@ The variable-length code table is derived from a binary tree
built from the estimated probability of occurrence for each
possible value of the source symbols

@ Prefix-free code? that expresses the most common
characters using shorter strings of bits than are used for
less common source symbols

2The bit string representing some particular symbol is never a prefix of the
bit string representing any other symbol
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Entropy Compression Algorithms

Dynamic Markov Compression

@ Developed by Gordon Cormack and Nigel Horspool (1987)

@ Adaptative lossless data compression algorithm

@ Based on the modelization of the binary source to be
encoded by means of a Markov chain, which describes the
transition probabilities between the symbol “0” and the
symbol “1”

@ The built model is used to predict the future bit of a
message. The predicted bit is then coded using arithmetic
coding
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Entropy Compression Algorithms

System Design

@ The system input is given by raw traffic traces in libpcap
format

@ The 5-tuple is used to identify a connection, while the value
of the TCP flags is used to build the “profile”

@ Avalue s; is associated to each packet:

si=SYN+2-ACK+4-PSH+8-RST+16-URG+32-FIN

thus each “mono-directional” connection is represented by
a sequence of symbols s;, which are integers in
{0,1,---,63}
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Entropy Compression Algorithms

System Design

Training Phase

@ Choose one of the three previously described algorithms
(Huffman, DMC, or LZW)
@ The compression algorithms have been modified so as that
the “learning phase” is stopped after the training phase:
e Huffman case: the occurency frequency of each symbol is
estimated only on the training dataset
o DMC case: the estimation of the Markov chain is only
updated during the training phase
o LZW case: the construction of the dictionary is stopped
after the training phase

@ Detection performed with a compression scheme that is
“optimal” for the “normal” traffic used for building the
considered “profile” and suboptimal for “anomalous” traffic

4
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Entropy Compression Algorithms

System Design

Detection Phase

@ Append each distinct “observed” connection b, to the
training sequence A

@ Compute the “compression rate per symbol”:

_ dim([A|b]) — dim([A]")

X Length(b)

where [X]* represents the compressed version of X

@ Choose between a single hypothesis Hy (normal traffic),
and the composite hypothesis H; (anomaly)

Ho
Xs¢

Hy
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Entropy Compression Algorithms

Results - System Comparison
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Entropy Compression Algorithms

Results - On-line System
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Sketch

Outline

e Sketch

@ Count-Min sketch
@ Heavy Hitters Detection
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Sketch Count-Min sketch

Data Stream Mining

Data Stream mining

The data stream mining is a set of techniques which permits to
analyze a data flow, almost in real-time, without storing all the
data

@ Can be used to analyze, for example, the network traffic

@ The aim can be the calculation of histograms, the
individuation of the most common features, etc.

@ Two constraints

@ Almost real-time
©Q Without storing all the data
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Sketch Count-Min sketch

The Count-Min Sketch Algorithm

Proposed by Cormode and Muthukrishran, 2004
@ Each element of the data flow is identified by
o idi; e {1,2,..., N}, with N big
o label c; e R
@ The data flow is the sequence (it, Ct)ten
@ An example

o The data flow is the network traffic
o i is the source IP address of packet ¢
@ ¢; is the length of packet t
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Sketch Count-Min sketch

The Count-Min Sketch Algorithm

@ At each instant 7 € N and for each id i/, we define a count
ai(t)

.
def
ai(r) = Y iy,
t=0

with §;, = 1if i = jr and ¢, ;, = 0 otherwise

@ In our example a;(7) is the total number of bytes sent from
i up to the instant =

o First step of the algorithm: estimate &;(7)
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Sketch Count-Min sketch

The Count-Min Sketch Algorithm

@ Fix the precision e and the failure probability &

o Lets w=[¢]and d = [In}]

@ Let’s take d independent random hash functions
@ Let’s allocate a table Countyy,, initialized to zero
°

For each instant ¢, let’s update the table according to:
for each
jeA{1,2,...,d} Count[j, hj(ir)] = Count][j, hj(it)] + ¢t

N

AN Y Y N N N I I I I |
7i87) A N

hy hy

[ e, P
=3
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Sketch Count-Min sketch

The Count-Min Sketch Algorithm

At the instant 7 and for each id i € {1,2,..., N} we have an
estimation &;(7) of the count a;(7)

ai(r) = mjin Count[j, h;(ir)](7)

> » Count[1, hy(i)] .
) ¥ y —» Count|2, hyi)] } LEt » (1)

-
Al » Countld, )]
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Sketch Count-Min sketch

The Count-Min Sketch Algorithm

Main properties
@ The estimator &;(7) > a;(1)
o P{&(r) < air)+elld(n)1}>1-0
o A(r) € (a(r), a(r), ..., an(r))
o [[E(7)llr = Jar(7)| + |aa(7)| + ... + |an (7))
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Sketch Count-Min sketch

The Count-Min Sketch Algorithm

Complexity in time

@ Number of operations for updating the Count table is
o(In(5))
@ Number of operations for calculating a; is O(ln(%))

Complexity in space

@ Number of words for storing the hash functions and the
Count table is O(1in(1))
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Sketch Heavy Hitters Detection

Finding Heavy Hitters

@ Aim: find those items whose frequencies exceed a
threshold ¢ during the observation window

@ These items are called Heavy Hitters

@ Possible application: finding the IP addresses, whose
contribution to the network traffic exceeds the threshold

@ An anomaly can be detected as a variation of the heavy
hitters distribution

At a given instant 7 and for a given threshold ¢ we define heavy
hitters all the i, such that a;(7) > ¢ || a(7) |1
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Sketch Heavy Hitters Detection

Application of the Count-Min sketch algorithm

Initialization, at the instant t = 0

@ Calculate || 8(0) |l1= co
@ Update Count

@ Add iy and his estimated count &;,(0) to the list L of the
potential heavy hitters
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Sketch Heavy Hitters Detection

Application of the Count-Min sketch algorithm

Ilteration, at the instant t = ¢

@ Calculate || &(t) [|1=|| a(t — 1) ||1 +ct
@ Update Count
@ Calculate the estimated count &;,(t)
o If &(t) > ¢ || &) |11 then
o If j; does not belongs to L: add j; and his estimated count
é,',(t) to L
o Else replace the count corresponding to i

@ Eliminate from the list every i, whose count is less than
o at) 1

After all the iterations, L contains all the heavy hitters
The real count of all the elements of L is greater than
(¢ —¢) || a(t) ||1, with probability at least 1 — &
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Sketch Heavy Hitters Detection

Finding Hierarchical Heavy Hitters

@ Extension of the method, which takes into account the
hierarchical structure of the IP addresses

@ The Hierarchical Heavy Hitters (HHH) are defined
recursively from the bottom to the top of the hierarchy

@ At the lowest level (level 0), the HHH are the Heavy Hitters
(i.e all those source addresses whose counts exceed the
threshold)

@ Atlevel / > 0 an IP prefix is a HHH if its count minus the
count of its descendant HHHSs is greater that or equal to
the threshold
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Sketch Heavy Hitters Detection

Finding Hierarchical Heavy Hitters

135.207.50.248/30| 0 + b +c > 0

135.207.50.248/31 | a+b < 0 135.207.50.250/31 | ¢ <

| 135.207.50.248 /32 || 135.207.50.240,/32 | [135.207.50.250/32 | [135.207.50.251/32
a<f h<6 @ () d=6

IOMB | 10MB | 10MB | 40MB 25 MB
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Outline

e Principal Component Analysis
@ PCA
@ Detection and Identification
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PCA PCA

Principal Component Analysis

PCA is a coordinate transformation method that maps the
measured data onto a new set of axes

@ These axes are called Principal Components

@ Each principal component points in the direction of
maximum variation or energy remaining in the data

@ The principal axes are ordered by the amount of energy in
the data they capture
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Geometric illustration
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BELE!

A week of network-wide traffic measurements from Internet2:
@ Internet2 samples 1 out of every 100 packets for inclusion
in the flow statistics
@ In Internet2 packets are aggregated into five-minute
time-bins
@ Abilene anonymizes the last eleven bits of the IP address
stored in the flow records

Routing Info.
In order to aggregate the collected IP flows into OD flows, we

also need to parse the routing data. Internet2 deploys Zebra
BGP monitors that record all BGP messages they receive.
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BELE!

Measurements Matrix, X;p:
@ Let p denote the number of traffic aggregate
@ Let t denote the number of time-bin

@ Column j denotes the time-series of the i-th traffic aggregate,
with zero mean

@ Row j represents an instance of all the traffic aggregate at j-th
time-bin

@ x, transposed row of X

X1 X2 0 Xip

X214 Xop - Xop
X = . ) .

X Xe2 -0 Xp
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PCA PCA

Principal Component Analysis

@ Using PCA, we find that the set of OD flows has small intrinsic
dimension (10 or less)
@ Stability over time of this kind of representation (from week to week)

Origin Destination Flows

An OD flow consists of all traffic entering the network at a given point,
and exiting the network at some other point, this is one out of the
three traffic aggregations analyzed.

@ High dimensional multivariate structure

@ PCA: lower dimensional approximation
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PCA PCA

Principal Component Analysis

@ Generalization of PCA to higher dimensions, as in the case
of X, take the rows of X as points in Euclidean space, so
that we have a dataset of t points in RP

@ Mapping the data onto the first r principal axes places the
data into an r-dimensional hyperplane.
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PCA PCA

Linear algebraic formulation

@ Calculating the principal components is equivalent to
solving the symmetric eigenvalue problem for the matrix
XTX

@ Each principal component v; is the i-th eigenvector
computed from the spectral decomposition of X7 X:

X'Xvi=X\Nvi i=1,...p (3)
Where ); is the eigenvalue corrisponding to v;

@ k-th principal component:

k—1
Vg = arg ||mH&lX1 (X = Xviv )|
vl|=

i=1
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PCA PCA

Principal Component Analysis

Once the data have been mapped into principal component
space, it can be useful to examine the transformed data one
dimension at a time:

@ The contribution of principal axis i as a function of time is given

by Xv;
@ This vector can be normalized to unit length by dividing by
oi =V
@ Thus, we have for each principal axis i:
u,-=ﬁ i=1,....p (4)
o

The u; (eigenflows) are vectors of size t and orthogonal by construction
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PCA PCA

Principal Component Analysis

@ Thus vector u; captures the temporal variation common to
all flows along principal axis i

@ The set of principal components {v,-}‘;’:1 can be arranged in
order as columns of a principal matrix Vpy

@ Likewise we can form the matrix Uiy p in which column jis
Uj

@ Then taken together, V', U, and ¢; can be arranged to
write each traffic aggregate X; as:

Xy, i=1,..p (5)

g

X; is the time-series of the i-th traffic aggregate and (V7); is the i-th row of V
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PCA PCA

Principal Component Analysis

Equation 5 makes clear that each traffic aggregate X; is in turn
a linear combination of the u;, with associated weights (V7);

@ The elements of {o;}*_, are the singular values

IXvil| = v XTXv; = \jviT v = A (6)

@ Thus, the singular values are useful for gauging the
potential for reduced dimensionality in the data, often
simply through their visual examination in a scree plot
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Scree Plot

Fgure s
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PCA PCA

Lower Dimensional Approximation

@ Finding that only r singular values are non-negligible,
implies that X effectively resides on an r-dimensional
subspace of RP:

r
X =) oy 7)
i=1

where r < p is the effective intrinsic dimension of X
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PCA Detection and Identification

Subspace Method

Subspace Method

This method is based on a separation of the high-dimensional
space occupied by a set of network traffic measurements into
disjoint subspaces corresponding to normal and anomalous
network conditions.

@ This separation can be performed effectively by Principal
Component Analysis

@ Once the principal axes have been determined, the
data-set can be mapped onto the new axes

@ Normal subspace: S
©Q Anomalous Subspace: S
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PCA Detection and Identification

Modeled and Residual Part of x

Detecting volume anomalies in link traffic relies on the
separation of link traffic x at any time-step into normal and
anomalous components:

@ modeled part of x

Q residual part of x

We seek to decompose the set of link measurements at a given
point in time x:
X=X+X

We form X by projecting x onto S, and we form % by projecting x onto &
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PCA Detection and Identification

Anomalous Subspace

Anomalous Subspace, x

To accomplish this, we arrange the set of principal components
corresponding to the normal subspace (vq, v, ..., V;) as
columns of a matrix P of size m x r where r denotes the
number of normal axes.

X=PP'x=Cx and X=(I—PP")x=Cx
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PCA Detection and Identification

Squared Prediction Error

A useful statistic for detecting abnormal changes in X is the
Squared Prediction Error (SPE):

SPE = ||X||* = ||Cx|[?
and we may consider network traffic to be normal if:

SPE < threshold
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PCA Detection and Identification

Identification

@ Now we know the anomalous time bin

@ We don’t know which is the anomalous traffic aggregate
responsible for this anomaly

Identification, for every ||X||? over the threshold:

We determine the smallest set of OD flows, which if removed
from the corresponding statistic, would bring it under threshold.
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PCA Detection and Identification

Multiway Subspace Method

@ The distributions of packet features (IP addresses and
ports) observed in flow traces reveal both the presence
and the structure of a wide range of anomalies.

@ They enable highly sensitive detection of a wide range of
anomalies
o Traffic Features:
@ SrclIP
@ DestIP
© Src Port
© Dest Port
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PCA Detection and Identification

Features Distributions

@ Many important kinds of traffic anomalies cause changes
in the distribution of addresses or ports observed in traffic
@ How feature distributions change as the result of a traffic

anomaly (e.g., port scan)
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PCA Detection and Identification

=lige]0)Y

The distribution of traffic features is a high-dimensional object
and so can be difficult to work with directly.

@ Analyze the degree of dispersal or concentration of the
distribution

©Q A metric that captures the degree of dispersal or
concentration of a distribution is sample entropy

© Empirical histogram Y = {n;,i=1,...,N}
©Q Sample entropy:

—-3 o

where S = Zf; n; is the total number of observations in the histogram
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PCA Detection and Identification

Multiway Anomalies

Anomalies typically induce changes in multiple traffic features.
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PCA Detection and Identification

Multiway Subspace Method

Anomalies Spanning multiple traffic features

@ Unfold the multiway matrix in Figure into a single, large
matrix

@ With this technique subspace method can detect
anomalies spanning multiple traffic features
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PCA Detection and Identification

The Architecture

Timeseries Construction
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C. Callega aly Detection 26 /169



PCA Detection and Identification

Experimental Results
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PCA Detection and Identification

Experimental Results

Pr of missed detections
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PCA Detection and Identification

Experimental Results

Dante, s=484,1 <m=< 11
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PCA Detection and Identification

Experimental Results

Some remarks on the method:

@ The false-positive rate is very sensitive to the
dimensionality of the normal subspace

@ The effectiveness of PCA is sensitive to the way the traffic
measurements are aggregated

@ Large anomalies can contaminate the normal sub-space
@ Pinpointing the anomalous flows is inherently difficult
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Detection and Identification

Experimental Results
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Experimental Results
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PCA Detection and Identification

Experimental Results
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PCA Detection and Identification

Experimental Results
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PCA Detection and Identification

Experimental Results
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PCA Detection and Identification

Experimental Results
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o Wavelet Analysis
@ Case Study 1
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Wavelet
WEVEIWAEATE

@ The wavelets are scaled and translated copies (known as
“daughter wavelets”) of a finite-length or fast-decaying
oscillating waveform (known as the “mother wavelet”)

@ Wavelet transforms have advantages over traditional
Fourier transforms for representing functions that have
discontinuities and sharp peaks

@ The main difference, with respect to the Fourier transform,
is that wavelets are localized in both time and frequency
whereas the standard Fourier transform is only localized in
frequency
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Wavelet
Wavelet Decomposition

@ Mother wavelet (1), satisfying the admissibility condition

W(w)?

dw <
|wl

@ Wavelet basis

{wm,n(t)}m,nez = {aam/2,¢ (al'J_mt B nbo)}

m,nez

@ Representation of any finite—energy signal x(t) € L?(R) by
means of its inner products {xm. ,} with the wavelets

{¥mn(t)} m ezt
Ximn = / X(t)-Gmn(t)dt = / x(t)-a; ™% (a5 ™t — nbo) dt (8)

m,nez

@ Orthonormal dyadic wavelet basis
@ gg=2and by =1
e Stringent constraints on the mother wavelet
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Mother Wavelet
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Wavelet

Filter bank implementation of the Wavelet Transform

@ Two scale difference equation

P(t) = V2) gnp(2t—n) () = V2 hap(2t - n)

where ;
On = (_1)n— h7n71
@ Let x = (x1, X2, ...) denote the approximation of a finite—energy
signal x(t)
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Wavelet and Edge Detection

@ An edge in an image is a contour across which the
brightness of the image changes abruptly

@ In image processing,an edge is often interpreted as one
class of singularities

@ In a function, singularities can be characterized easily as
discontinuities where the gradient approaches infinity

@ However, image data is discrete, so edges in an image
often are defined as the local maxima of the gradient

@ Wavelet transform has been found to be a remarkable tool
to analyze the singularities including the edges and to
detect them effectively
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Wavelet

Wavelet and Edge Detection
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Wavelet and Anomaly Detection

@ The concept of edge can be easily extended to that of
anomaly in network traffic

@ Classical approaches look at the time series of specific
kinds of packets inside aggregate traffic

@ They detect irregular traffic patterns in traffic trace

Wavelet analysis is applied to evaluate the traffic signal filtered
only at certain scales, and a thresholding technique is used to
detect changes
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Wavelet Case Study 1

A case study

A Signal Analysis of Network Traffic Anomalies

Paul Barford, Jeffery Kline, David Plonka and Amos Ron
ACM Internet Measurement Workshop 2002
The Measurement Data:

@ SNMP and IP flow data

@ collected at the border router (Juniper M10) of the
University of Wisconsin-Madison campus network

@ the campus network consists primarily of four IPv4 class B
networks or roughly 256,000 IP addresses of which fewer
than half are utilized

@ |P connectivity to the commodity Internet and to research
networks via about 15 discrete wide-area transit and
peering links all of which terminate into the aforementioned
router
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Wavelet Case Study 1

SNMP Data

@ The SNMP data was gathered by MRTG at a five minute
sampling interval which is commonly used by network
operator

@ The SNMP data consists of the High Capacity interface
statistics, defined by RFC2863, which were polled using
SNMP version 2¢

@ Byte and packet counters for each direction of each
wide-area link, specifically these 64-bit counters:
ifHCInOctets, ifHCOutOctets, ifHCInUcastPkts, and
ifHCOutUcastPkt
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Wavelet Case Study 1

IP Flow Data

@ The flow data was gathered using flow-tools and was
post-processed using FlowScan

@ The Juniper M10 router was running JUNOS 5.0R1.4, and
later JUNOS 5.2R1.4, and was configured to perform
“cflowd” flow export with a packet sampling rate of 96

@ This caused 1 of 96 forwarded packets to be sampled, and
subsequently assembled into flow records similar to those
defined by Cisco’s NetFlow version 5 with similar
packet-sampling-interval and 1 minute flow active-timeout

@ Data were post-processed, so as to store mean value (over
5 minutes time-bins) of rate and packet dimension
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Wavelet Case Study 1

Anomalies

By manual inspecting the data, 109 anomalies were identified:
@ 41 Network Events
@ 46 Attacks
@ 4 Flash Crowds
@ 18 Measurement Events
Necessity of filtering out the daily and weekly variations

C. Callegari Anomaly Detection 151/169



Wavelet Case Study 1

The Method

@ Framelet system, i.e. a redundant wavelet system (which
essentially means that r, the number of high-pass filters, is
larger than 1; a simple count shows that, if r > 1, the total
number of wavelet coefficients exceeds the length of the
original signal)

@ In chosen system, there is one low-pass filter L and three
high-pass filters Hy , Ho , Hs
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Wavelet Case Study 1

The analysis platform

Derive from a given signal x (that represents five-minute
average measurements over a 2 months period) three output
signals, as follows

@ The L(ow frequency)-part of the signal: all the
low-frequency wavelet coefficients from levels 9 and up

e should capture patterns and anomalies of very long
duration: several days and up

o signal here is very sparse (its number of data elements is
approximately 0.4% of those in the original signal), and
captures weekly patterns in the data quite well

o for many different types of Internet data, the L-part of the
signal reveals a very high degree of regularity and
consistency in the traffic, hence can reliably capture
anomalies of long duration
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Wavelet Case Study 1

The analysis platform

@ The M(id frequency)-part of the signal: the wavelets
coefficients from frequency levels 6, 7, 8
e has zero-mean
e is supposed to capture mainly the daily variations in the
data
o data elements number about 3% of those in the original
signal

@ The H(igh frequency)-part of the signal: obtained by
thresholding the wavelet coefficients in the first 5 frequency
levels

o need for thresholding stems from the fact that most of the
data in the H-part consists of small short-term variations,
variations that we think of as “noise”
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Wavelet Case Study 1

Detection of anomalies

@ Normalize the H- and M-parts to have variance one

@ Compute the local variability of the (normalized) H- and
M-parts by computing the variance of the data falling within
a moving window of specified size

@ The length of this moving window should depend on the
duration of the anomalies that we wish to captured

o If we denote the duration of the anomaly by f and the time
length of the window for the local deviation by t;, we need,
in the ideal situation, to have q = f/t; = 1

o If the quotient q is too small, the anomaly may be blurred
and lost

o If the quotient is too large, we may be overwhelmed by
anomalies that are of very little interest

C. Callegari Anomaly Detection 155/169



Wavelet Case Study 1

Detection of anomalies

@ Combine the local variability of the H- part and M- part of
the signal using a weighted sum. The result is the
V(ariable)-part of the signal

@ Apply thresholding to the V-signal. By measuring the peak
height and peak width of the V-signal, one is able to begin
to identify anomalies, their duration, and their relative
intensity

@ Needed Parameters:

o M- window size

@ H- window size

e weights assigned to the M- and H-parts
e threshold
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Wavelet Case Study 1

Experimental Results

One Autonomous System to Campus, Inbound, 2001-DEC-16 through 2001-DEC-23
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Fig. 1. Aggregate byte traffic from IP fbw data for a typical week plus
high/mid/low decomposition.
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Experimental Results

One Interface to Campus, Inbound, 2001-DEC-16 through 2001-DEC-23
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Fig. 2. Aggregate SNMP byte traffic for the same week as Figure 1 plus
high/mid/low decomposition.
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Experimental Results

30M

25M
320 M
Z15M
Z10M

5M

=

-SM

-10M

20M
15M
10M

5M

0 Oct-01

Case Study 1

Class-B Network, Outbound, 2001-SEP-30 through 2001-NOV-25
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Fig. 3. Baseline signal of byte traffi c for a one week on either side of a fhsh
crowd anomaly caused by a software release plus high/mid/low decomposi-
tion.
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Experimental Results

Campus HTTP, Outbound, 2001-SEP-30 through 2001-NOV-25
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Fig. 4. Baseline signal of average HTTP packet sizes (bytes) for four weeks on
either side of a fhsh crowd anomaly plus mid/low decomposition.
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Experimental Results

Campus TCP, Inbound, 2002-FEB-03 through 2002-FEB-10
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Fig. 5. Baseline signal of packet fbws for a one week period highlighting two
short-lived DoS attack anomalies plus high/mid/low decomposition.
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Experimental Results

Campus TCP, Inbound, 2002-FEB-10 through 2002-FEB-17
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Fig. 6. Baseline signal of byte traffi c from fbw data for a one week period show-
ing three short-lived measurement anomalies plus high/mid/low decomposi-
tion.
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Experimental Results

Campus TCP, Inbound, 2002-FEB-03 through 2002-FEB-10
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Fig. 7. Deviation analysis exposing two DoS attacks and one measurement
anomaly in for a one week period in packet count data.
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Experimental Results
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Fig. 8. Deviation analysis exposing a network outage of one (of four) Class-B networks.
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Experimental Results
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Wavelet

Experimental Results

Inbound

Case Study 1

Outbound
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Fig.9. Deviation analysis of two DoS events as seen in the 254 host subnet containing the victim of the attack (top) and in the aggregate traffi ¢ of the entire campus.
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Experimental Results

Class-B Network, Outbound, 2001-NOV-25 through 2001-DEC-23
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Fig. 10. Example of three-band analysis exposing a multi-day network abuse
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Thank You for your attention
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