PANEL - ICDT, CTRQ, MOPAS

Tendencies and Challenges in Signal Processing, Modeling and Telecommunications

INTRODUCTION

Eugen Borcoci,
University Politehnica Bucharest
PANEL – ICDT, CTRQ, MOPAS
Tendencies and Challenges in Signal Processing, Modeling and Telecommunications

Moderators:
Michel Diaz, LAAS-CNRS - Toulouse, France
Eugen Borcoci, University Politehnica of Bucharest, Romania

Panelists:
Andrei Alexandru Enescu, University Politehnica of Bucharest, Romania
António Nogueira, University of Aveiro, Portugal
Elena Troubitsyna, Abo Akademi University, Finland
Michel Diaz, LAAS-CNRS - Toulouse, France
Eugen Borcoci, University Politehnica of Bucharest, Romania
Panel topics

- Short presentations:
 - Andrei Alexandru Enescu: **MIMO systems, their impact on digital communication systems and issues regarding complexity of implementation.**
 - António Nogueira: **Traffic and network modeling**
 - Elena Troubitsyna: **Model-driven development of fault tolerant communication systems**
 - Michel Diaz: **Overlays, Intelligent ad-hoc networks, Embedded networked systems**
 - Eugen Borcoci: **Telecommunication and Future Internet Convergence Challenges**

- Q/As
Tendencies and Challenges in Signal Processing, Modeling and Telecommunications

Michel Diaz
NexComm Panel
Athens June 2010
Main Open Questions

• High level network Overlays

• New intelligent ad-hoc networks

• Embedded Networked Systems
High level network Overlays

• **Overlays**
 – Do not follow the provider (physical) routing
 – Build a virtual new (higher level) layer
 – Include reliability, user optimisation, etc

• **Next generation of set-up up boxes**
 – Very efficient
 – Shared by the provider and the user
 – Will be the next internet P2P equipment
 – What size and what functions can it provide?
New intelligent ad-hoc networks

• Present ad-hoc networks are not related to applications
 – As much as possible Independent
 – Improvements from Bottom-Up cross-layering
 – New intelligent actors (e.g. robots) appear

• Can we drive protocols by applications
 – Excellent Correlation
 – Optimisation and Adaptation
 – Can we add Cognition to the protocols
 – Top Down cross-layering added to Bottom-Up
Embedded Networked Systems - Step 1
Reliable communication systems

- **Formal Description techniques** (Petri nets, Algebraic Calculus, Estelle, LOTOS, SDL,...) for ISDN networking
 - FDTs went to Embedded Systems that increase in complexity
- **To come back to Networking needs**
 - Abstract Models for wireless comm & protocols
 - Models for network Architectures (for layers)
 - Models for (part of) the QoS internet
Embedded Networked Systems - Step 2
New generation of ENS

1. Define a Next generation of mobile and dynamic Embedded Systems based on Ad-hoc networks

2. Handle Complexity of Ad-hoc networks
 – Define the Certification properties needed for Embedded Systems
 – Develop Specification & Verification of Time constraints and Reliability
 – Develop Code generation and certification (certifying the code, the compiler, etc)
CHALLENGES IN 4G COMMUNICATION SYSTEMS FEATURING MIMO SYSTEMS

Lect. Andrei Alexandru Enescu, Ph. D
Politechnic University of Bucharest
CHALLENGES IN SIGNAL PROCESSING

- “MIMO” is the word of the day
- MIMO systems
 - Beamforming
 - Space-time coding
 - Spatial multiplexing
 - Any combination of the techniques above
- Fast decoding algorithms
 - Need for parallelism
- Radio interface... new tendencies?
 - OBSAI / CPRI
- Fast memory access
 - DDR3 / QDR ...?
MIMO TRENDS

Space diversity – increased coverage

Spatial multiplexing – increased throughput

Beamforming – interference mitigation
Spectral efficiency: $N_t \times M$
- $N_t =$ number of transmit antennas
- $M =$ modulation intrinsic spectral efficiency (e.g. 1 b/s/Hz for QPSK $\frac{1}{2}$, 5 b/s/Hz for 64QAM $\frac{5}{6}$)
- Example: MIMO 4x4 + 256 QAM $\frac{7}{8} \Rightarrow 28$ b/s/Hz!
 - 560Mbps @ 20MHz bandwidth
- Some limitations will come from:
 - Training symbols
 - Implementation loss
 - Logical channels

Who will carry all this throughput??
- Fast DSPs
- Fast digital interfaces (radio interfaces)
- Rapid memory access
MIMO ALGORITHMS

- ML algorithms used for decoding have to deal with codewords of $2^M \times N_t$
 - 256QAM with 4x4 => 256^4 possibilities = 2^{32} codewords (~ = 2E+9 search space!!)

- MMSE and ZF algorithms exhibit tremendous implementation loss especially for large N_t

- Find hybrid solutions
 - Quasi-ML: Sphere decoders
 - Implementation-oriented algorithms (parallel features)
PANEL : ICDT CTRQ MOPAS

Tendencies and Challenges in Signal Processing, Modeling and Telecommunications

Telecommunication and Future Internet Convergence Challenges

Eugen Borcoci,
University Politehnica Bucharest
Telecommunication and Future Internet Convergence Challenges

- FACTS

- Telecommunication and Internet convergence - recognized and developed – last 15 years
 - Full service integration - based on packet networks support and layered architectural stack
 - Intelligent terminals
 - Flexible IP –based transport
- Future Internet – hot topic in discussion
- How to evolve?
 - Evolution
 - Revolution
 - Something in the middle?
- How the Telecom “world” will participate in this initiative?

- Many efforts to define/re-define the future directions of FI (seen from different point of views): Research groups, Academia, Industry, Standardization organizations, Governments, Users, ..
 - Still – there are many open FI issues, including discussion/revision of the basic concepts

ICDT, MOPAS, CTRQ 2010 Conferences, Glyfada, June 13-19, 2010
Telecommunication and Future Internet Convergence Challenges

- Telecommunication view
- Next Generation Networks Architecture (ITU-T, ETSI, 3GPP)

NGN

- *packet-based, broadband* network
- provides Telecommunication *multiple services*
- *QoS-enabled* transport technologies
- service-related functions are independent from underlying transport-related technologies.
- *flexible access* for users to networks and to competing service providers and/or services of their choice.
- *generalized mobility* which will allow consistent and ubiquitous provision of services to users.

- Standardization actors: ATIS NGN FG, ITU-T NGN FG, ETSI TISPAN, 3GPP, etc.
Telecommunication and Future Internet Convergence Challenges

- **Telecommunication view**

- **Key requirements satisfied by the NGN Architecture**
 - **Trust and security:**
 - Operator should be able to trust the network.
 - User should be able to trust the operator.
 - **Reliability:** Users should find it reliable.
 - **Availability:** Network should always be available.
 - **Quality:** Able to control and guarantee the Quality of the Services.
 - **Accountability:** Determine usage of the Service.
 - **Legal:** Comply with laws in the local jurisdictions.
 - **Generalized** Mobility and services support.

- **Note:** Classical and current Internet only partially respond in very controllable manner to the above requirements.
Telecommunication and Future Internet Convergence Challenges

- **Telecommunication view**
- NGN example:
- 3GPP release 6, 7, etc.: IP Multimedia Subsystem (IMS)
 - telecomm. network for broadband fixed and mobile access
 - facilitates convergence of networks and services
 - enables different business models across access, core network and service domains
 - Is an IP based network
 - *Session Initiation Protocol (SIP)* and family are used for call & session control
 - enables any IP access to Operator IMS, from Mobile, Home, Enterprise domain
 - enables service mobility
 - enables interworking towards circuit switched networks
 - maintains Service Operator control for IMS signaling & media traffic.
Telecommunication and Future Internet Convergence Challenges

- Telecommunication view

- NGN high level view of the architecture
 - Some questionable features
 - Wall gardened- style (e.g. IMS) (restricted “democracy”??)
 - Do not mix the transport and application
 - Very complex architecture: many GWs,
 - Not enough flexible,
 - …

ICDT, MOPAS, CTRQ 2010 Conferences, Glyfada, June 13-19, 2010
Telecommunication and Future Internet Convergence Challenges

- Future Internet
- Current Internet:
- Some Critics:
 - Victim of its own success
 - Ossification (TCP/IP invariants)
 - Too many patches (routing, mobility, security, signalling, ...)
 - Location/Identity unit
 - Neutral character of the network??
 - Low security and trust
 - Not powerful enough management and control
 - ...see key features that NGN pretends to fulfill
Future Internet

Needs/trends to be answered (partial list)

- **Connectivity**
 - Very high rate throughput - E2E, ubiquitous good/cheap network access
 - Universal connectivity of devices, coupling of virtual world data with physical world information (RFID, sensors)
 - Mobility needs (micro, macro, terminal/session, network mobility)

- **Security and trust**
 - Need for much more security, trust, privacy, anonymity capabilities

- **New services aspects:**
 - VoIP, P2P-based, IPTV, 3D, composable services, ..
 - User generated content and services, User controlled infrastructure,
 - Novel human-computer interaction techniques
 - Personalized services will become widespread on the FI.
 - **Service-centric aware, content centric aware**
 - Computing and software as a network-centric service.

- **Management and control**
 - Negotiated management and control of resources, negotiated SLA’s
 - More need for Availability, reliability, and dependability
Future Internet

KEY issues on FI concepts and design:

- **evolution? or clean slate approach? or something in the middle?**
- **Source:** Petri Mahönen, Project Coordinator, EIFFEL, RWTH Aachen University “Evolved Internet Future for European Leadership (EIFFEL)”, FI Conference, Bled, 2008
Future Internet

- The network revolution
 - Software Services
 - Spectrum flexibility
 - Internet of Things
 - 3D Internet
 - Future Multi-Service Networks
 - Converged Packet Networks
 - User created content
 - Net neutrality
 - IPv6
 - NGA
 - Spectrum

Existing Technology

Emerging Technology

ICDT, MOPAS, CTRQ 2010 Conferences, Glyfada, June 13-19, 2010
Telecommunication and Future Internet Convergence Challenges

- **FI Initiatives:**
 - **Europe**
 - Networked European Software and Services Initiative
 - FIRE (Future Internet Research and Experimentation)
 - FP&, … research programs
 - Management and Service-aware Networking Architectures (MANA) for Future Internet
 - Forum of Member States, the "Future Internet Forum“
 - *National level initiatives* and programs oriented for FI (partial list): Belgium, France, Finland, Germany, Italy, Nederland, Spain, Sweden, UK, etc
 - …
 - **USA** - GENI/FIND - of the NSF (originated ~10 years ago)
 - GENI - Global Environment for Network Innovation
 - **Japan**: "New Generation Network" initiative (NWGN) complemented with the creation of the NWGN promotion forum

ICDT, MOPAS, CTRQ 2010 Conferences, Glyfada, June 13-19, 2010
Future Internet Initiatives (cont’d)

- Example of a FI-oriented project:
 - ALICANTE, 2010-2013, Integrated Project (IP): MediA Ecosystem
 - Deployment Through Ubiquitous Content-Aware Network Environments

- Applying new challenging concepts (Future Internet – oriented) of:
 - Content Aware Networking
 - Network Aware Application

- Proposal of a novel virtual Content-Aware Network (CAN) layer
 - as a part of a full layered architecture
 - focused, but not limited to, on multimedia distribution with Quality of Services (QoS) assurance

- The system supports on a flexible cooperation between
 - providers,
 - operators and end-users,
 - enabling users to access the offered multimedia services in various contexts and also to become private content providers.
Future Internet Initiatives (cont’d)

- **ALICANTE project:**
 - Architectural high level view
Thank you