A Cluster-Based Implementation of a Fault Tolerant Parallel Reduction Algorithm Using Swarm-Array Computing

Authors:
Blesson Varghese, Gerard McKee, Vassil Alexandrov
School of Systems Engineering
University of Reading, United Kingdom
E-mail: b.varghese@student.reading.ac.uk, g.t.mckee@reading.ac.uk, v.n.alexandrov@reading.ac.uk
Table of Contents

- Introduction
- Swarm-Array Computing
- Proof of Concept
- Implementation
- Impact
- Conclusion
Introduction - 1

• Fault Tolerance
 ◦ Important issue in distributed parallel computing systems
 ◦ High level view
 • Reliable business systems – continue operation when system components have failed
 ◦ Low level view
 • Reduce impact of failure when it occurs – seamlessly continue execution of a task
Introduction - 2

- Two types of fault tolerance:
 - Reactive Fault Tolerance
 - Reduce impact of failure when it occurs
 - “Response after failure occurs”
 - Proactive Fault Tolerance
 - Predicts failures likely to occur
 - “Responding when a failure is likely to occur”

- Research in this paper focuses on *Proactive Fault Tolerance*
Introduction - 3

- Modern day fault tolerance
 - Technology used – Multi-agent Systems
 - Classification of Multi-agent fault tolerance:
 - Fault tolerance of multi-agent framework
 - Fault tolerance of individual agent in the framework

- Existing research on multi-agent based fault tolerance does not explore the extension and implementation of such ideas for large scale parallel computing systems
Question that needs to be addressed:

“How can a bridge between fault-tolerance in multi-agent systems and parallel computing systems be built?”

Hence, Swarm-Array Computing is proposed.
Swarm-Array Computing - 1

~Swarm-Array Computing~
Presented by: B. Varghese
Swarm-Array Computing - 2

- Constitution
 - Computing Systems
 - Field Processing Gate Arrays (FPGAs) and Computer Clusters used in this study
 - Cores can be considered as ‘intelligent cores’
 - Problem/Task
 - A Task to be executed can be considered as a swarm of autonomous agents
 - Tasks can be considered as ‘intelligent agents’
Swarm-Array Computing - 3

• Constitution (contd.)
 ◦ Swarms
 • Combination of Intelligent Cores and Intelligent Agents
 ◦ Landscape
 • Arena in which cores and agents interact with each other
 • Defines the state of the computing system and the task being executed
Swarm-Array Computing - 4

- **Approaches**
 - Fits the Swarm-Array computing constituents together
 - Three approaches
 - First Approach - Intelligent Cores
 - Second Approach - Intelligent Agents
 - Third Approach - combinative approach considering both Intelligent Cores and Intelligent Agents
Approaches (contd.)

- First Approach - Intelligent Cores
 - Hardware abstracted to intelligent cores
 - On the event of a failure, tasks can get transferred from one core to another
 - Landscape – the arena on which the task gets executed
• Approaches (contd.)
 ◦ Second Approach - Intelligent Agents
 • Hardware layer abstracted
 • Tasks mapped onto autonomous swarm agents
 • On the event of a node failure, agents move from one core to another
 • Landscape – the arena on which the agents traverse

• Intelligent Agent based approach considered in this paper
Swarm-Array Computing - 7

- Approaches (contd.)
 - Third Approach - Intelligent Cores and Intelligent Agents
 - Combination of the first and second approach
Proof of Concept - 1

- Experimental Environment
 - Multi-agent simulator the best option
 - SeSAm (Shell for Simulated Agent systems) simulator
 - Provision for modelling agents, world and simulation runs

- Modelling
 - The cores of the FPGA modelled as agents
 - 5 X 5 regular grid FPGAs considered
Proof of Concept - 2

- Modelling (contd.)
 - Core temperature simulated
 - Approach 2 – Intelligent Agents
 - When core temperature increases beyond a threshold, the agent executing on a core moves to another core
Proof of Concept - 3

~Swarm-Array Computing~
Presented by: B. Varghese
Implementation - 1

- What tasks can benefit from Swarm-Array Computing?
 - Parallel Reduction Algorithms
 - the computing nodes of a parallel reduction algorithm tend to be critical
 - employed in critical applications such as space applications
Implementation - 2

- Resources:
 - ACET Teaching Cluster used as computing platform
 - 1 head node and 33 compute nodes
 - Connected via the Gigabit Ethernet switch
 - All communications through TCP

- Middleware
 - Open MPI 1.3.3, open source implementation of MPI (Message Passing Interface) version 2.0
 - Supports Dynamic Process Creation and management
Implementation - 3

- Two Parallel Reduction Algorithm Implementations:
 - Classic Version
 - No fault tolerant concepts
 - If used in critical versions would stall the algorithm
 - Fault Tolerant Version
 - Implemented using ‘Intelligent Agents’ in Swarm-Array Computing
Implementation - 4

- Landscape:
 - Rules / Policies for abstraction
 - Hardware nodes abstracted to logical nodes
Implementation - 5

- Each process executing on a node gathers some sensory information
 - Prediction on whether a node is likely to fail
 - Similar to proactive fault tolerance.
- Node temperatures simulated
 - When the temperature of a node rises beyond a threshold, the process executing on that node predicts a failure
 - Spawn a new process on an adjacent core in the abstracted layer.
- The agent on the abstracted core expected to fail shifts to the adjacent core on which the new
- Dependency information carried by the agent that was shifted to the new core is employed to reinstate the state of execution of the algorithm.
- Ensures that information is not lost and does not affect the final solution in critical applications.
Impact

• Useful for space applications
 ◦ Space crafts employ FPGAs
 ◦ When space craft leaves the atmosphere, Single Event Upsets (SEUs) likely to occur due to radiations
 ◦ Hardware reconfiguration or software uploading from earth extremely impossible
 ◦ Hence self-managing approach required
 ◦ Swarm-Array Computing can come to play
Conclusion

- `Intelligent Agent’ approach in Swarm-Array Computing considered
- Proof of concept validated on a multi-agent simulator
- Implementation on the ACET teaching cluster using Open MPI
- Two implementations – classic vs fault tolerant
- Traditional Fault Tolerant methods can be replaced
Thank you for your undivided attention