Secure Multicast Communication

J. William Atwood

Distinguished Professor Emeritus
Computer Science and Software Engineering
Concordia University
Course overview

- Secure Multicast Communication
 - Overall motivation
- Overall Architecture
 - Motivation for using multicast
- Participant Access Control
 - Receiver Access Control, Sender Access Control
 - Policy Mechanisms
 - Mobility
Key Management
- Proxy Encryption
- SIM-KM
- Authentication
- Implementation

E-commerce Interactions
- Survey
- Protection Profile
- Protocols

Control Plane Security
Results

- Many advantages for the End Users
- Potentially very lucrative for the Content Providers
- But, a growing challenge for the Network Service Providers and Content Servers
Network Structures

CN = Core Network
AN = Access Network
EU = End User
Communications Patterns 1

CN = Core Network
AN = Access Network
EU = End User
CN = Core Network
AN = Access Network
EU = End User
WS = Web Server

Web access
CN = Core Network
AN = Access Network
EU = End User

Communications Patterns 3

Private Web Page

2009/10/11
CN = Core Network
AN = Access Network
EU = End User
CS = Content Server
Summary

- Number & speed of Access Networks is growing
 - This puts more load on the Core Networks

- For “central server” applications
 - Even higher load on the Core Network
 - Very high load on the Content Server

- It is in these areas that a solution is needed
Today’s Transaction Model

- Customer accepts offer from Content Provider
 - Encryption (defined by the Content Provider) is used to prevent theft
- Delivery is “over the network”
 - Network only “moves the bits”

Transaction Relationships

- Content Provider
- Content Server
- Network Service Provider
- Delivery paths
- End User

2009/10/11 NexTech 2009 Secure Multicast Communication
Network Service Provider View

- Network Service Provider controls access to “the (entire) network”
 - Network Service Provider only charges for “access to the network”
- Network Service Provider can deliver all services using “unicast” (one-to-one) communication
 - Each client (End User) has his/her own path
Access Control

- Two types of access control
 - Access to the service (controlled by the Content Provider, once per session)
 - Access to the network (controlled by the NSP, once per signon)
Tomorrow’s Delivery Model

- As the Client Base increases, likelihood of simultaneous demands for identical material increases
- For “centralized” services, the network may saturate under heavy demand, and the Content Server is likely to reach an upper limit
Multicast: A Solution

- Each End User shares common parts of the distribution path

- Each packet of the session flow only needs to be sent \textit{once}
 - Capacity of sender(s) does not need to grow
 - Capacity of the network can be smaller

- Core Routers must duplicate packets of a particular session
Standard Multicast

- Has been standardized for many years
- Multicast Advantages
 - Lower demands on the Content Server
 - Lower resource utilization in the network
 - Increase in scalability (= more revenue)
Building the Data Distribution Tree

Content Provider

Content Server

Network Service Provider

End User
End User
End User
Key Problem with Standard Multicast

- Loss of Control
 - The Data Distribution Tree has been built by the network, without consulting the Content Provider
 - The Content Provider does not know which End Users have received the session information
 - Vulnerable to fraudulent access by non-authorized Senders and/or End Users
Resolving the Problem

- **Session**
 - Defines the product that you purchased
 - Provides the keys for encryption

- **Data Distribution Tree**
 - Defines the network-level group
 - Joining will cause the End User’s computer to be grafted onto the Data Distribution Tree

- **Our solution** is to take the existing *network access* protocol, and use it to control access to individual *sessions*
Gaining Control 1

- For End Users
 - Combine the Session and Data Distribution Tree Join actions
 - Carry the session authorization on the DDT Join

- This allows the NSP to:
 - Determine who you are (authentication)
 - Determine that you are allowed to receive this session (authorization)
 - Record delivery of the product corresponding to a specific session (for accounting)
Gaining Control 2

- For Senders
 - We had to introduce a “Sender Join” action at the network level, to provide Sender Access Control for the Session
 - This then allowed us to use the extended standard network access protocols to allow managing a session
- Thus, the NSP can control and account for senders
Secure Multicast

- Achieving this control allows the NSP to “build a fence”
 - Control the End User access to the session
 - Control the Sender access to the session

- The Data Encryption Keys will be distributed only to legitimate participants

- The Data will only be accepted from a legitimate Sender, and will only be delivered to legitimate End Users.
Interior Communications

Policy Server

Sender

Local Router

Authorization Protocol

Network Access Protocol

Network-level Join (extended)

Sender Join

Network Join

End User
Other Issues Resolved

- Managing the Data Encryption Keys given multiple session participants
- Protecting the Data Distribution Tree against bogus data insertions
- Extending the Work to Multiple Administrative Domains
 - Senders will not always have the same Network Service Provider as the End Users
- Extending the Work to Mobile Environments
Current Issues

- Protecting the Neighbour Relationships among the Routers
 - To prevent intruders from altering the shape of the Data Distribution Tree
- Interfacing with the E-Commerce world
 - To collect the money
Technology Transfer

- Standardization to be done
 - Extensions to Network Level Join, to carry session credentials
 - Use of the standard (network-level) Authentication protocol to achieve session control
 - Application of a newly-defined extension to the standard Authentication protocol to permit “fast” mobile handoff

- Standardization in progress
 - Management of neighbour relationships for multicast routers
Future Work

- Digital Rights Management
 - Achieving control even after the session is over
- Implementation
 - Value-added routers: the XORP project
 - Extensions to existing protocols
Thank you!

- Questions?