Tutorial at NexTech 2009, Sliema, Malta

Dr. Anna Forster, University of Lugano, Switzerland

anna.foerster@ieee.org

Tutorial goal

Learn how Machine Learning can help you
optimize your WSN communications

= Select the most appropriate ML technique for
your problem

= Design the ML based solution and implement it
efficiently

= Transfer the obtained knowledge to other wireless
networking problems
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Overview

Part 1:
Introduction to Wireless Sensor Networks
Machine Learning techniques and their
properties

Part 2:
State of the art applications of ML to WSNs
Discussion of further application areas and
problems
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Wireless Sensor Networks

Overview, problems and challenges
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Wireless Sensor Networks

Challenges of Wireless Sensor Networks

Wireless Ad Hoc Medium
unreliable, asymmetric or
unidirectional links
restricted broadband
broadcast advantage

Topology changes and Harsh environments
mobility no physical access to network
mobile sinks and/or nodes once deployed (glaciers, volcano)
failing nodes varying temperature, humidity,
new nodes joining wildlife

Resource limitations
small on-node battery
limited processing and
memory
low cost
many nodes, physical
distribution
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Developing Wireless Sensor Networks

Communication stack

Clustering

~ > Routing and neighborhood

" Topieof this
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Application level

\ Reconstruction of data

WSN distributed
& databases
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Security

Applications
O G

Machine Learning

What is Machine Learning and why should we use it?
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Machine Learning for WSNs

Machine learning can innately solve various challenges in WSNs and
improve their performance significantly

Learning

. QU:;I Reinforcement
o

Neural

Trees Major goal /A0 Networks
Produce models (rules, patterns)

from data

Properties
Swarm Robust and flexible Genetic

Intelligence Global models from local data Algorithms

No environmental model

\/
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Reinforcement Learning

Trial and error: Learn from your environment
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Reinforcement Learning

A learning agent

A pool of possible actions
Goodness of actions

A reward function

Select one action

Execute the action

Observe the reward

Correct the goodness of the executed action
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Introduction to Q-Learning
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Introduction to Q-Learning

O Learning agent
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Introduction to Q-Learning

O Learning agent

O Internal current state s,

START
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Introduction to Q-Learning

O Learning agent
O Internal current state s,

O Pool of possible actions
Asy)

START
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O Learning agent

O Internal current state s,

O Pool of possible actions
Adsy)

O Associated Q-value to each
action in each state

START
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Introduction to Q-Learning
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— 100 =¥ action with immediate

reward 100 and cost -2

START

Learning agent
Internal current state s,

Pool of possible actions
Asy)

Associated Q-value to each
action in each state

Immediate reward after
each action
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-- 0 ---- action with immediate
reward 0 and cost -1

— 100 =¥ action with immediate
reward 100 and cost -2

START

Learning agent
Internal current state s,

Pool of possible actions
Adsy)

Associated Q-value to each
action in each state

Immediate reward after
each action

Learning procedure:

O selectan action
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Introduction to Q-Learning
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reward O and cost -1
— 100 =¥ action with immediate

reward 100 and cost -2

START
L

nmediate

Learning agent
Internal current state s,

Pool of possible actions
Asy)

Associated Q-value to each
action in each state

Immediate reward after
each action

Learning procedure:
O selectan action

O execute the action
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nmediate

reward 0 and cost -1

ttion with immediate
ward 100 and cost -2

START

Learning agent
Internal current state s,

Pool of possible actions
Adsy)

Associated Q-value to each
action in each state

Immediate reward after
each action

Learning procedure:
O selectan action
O execute the action

O observe reward
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Introduction to Q-Learning
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reward O and cost -1
ttion with immediate
ward 100 and cost -2

nmediate

START

Learning agent
Internal current state s,

Pool of possible actions
Asy)

Associated Q-value to each
action in each state

Immediate reward after
each action

Learning procedure:
O selectan action
execute the action

observe reward

update state and Q-
values
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nmediate

reward 0 and cost -1
ttion with immediate
ward 100 and cost -2

START

Learning agent
Internal current state s,

Pool of possible actions
Adsy)

Associated Q-value to each
action in each state

Immediate reward after
each action

Learning procedur
O selectan actio
execute the adtion

observe rewar

update state andQ-
values
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How to recompute the Q-values?

learning constant old Q-Value
0 : y((_R(s,,a,) )
new Q-Value old Q-Value immediate reward received

after executing action
ain state s at time t

Learning constant: avoid oscillations of Q values at the
beginning of the learning process (smooth the Q-Values)
y=o0 : new Q-Value is exchanged with the reward
y=1 : new Q-Value is the same as the old one

Copyright: Anna Forster 2009

How to define the reward function?

Two main types:
Pre-defined
Computed after each action
Often used :
zero awards for actions leading directly to the goal
negative for all others (e.g. -1)
Also used:
Manhattan distance to the goal
Geographic distance to the goal
Currently best available Q value at the state (!!)

Copyright: Anna Forster 2009
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How to decide which action to take?

Exploration strategy (action selection policy)
Cannot be random, need to use accumulated
knowledge
Cannot be greedy, need to explore all
possibilities
Often used: e-greedy
select a random action with probability €
select the best available one (best Q-value) with
probability (1-€)

Copyright: Anna Forster 2009

Properties of Reinforcement Learning

Simple, flexible model

Adapts to changing environments, re-learn

quickly

Copes successfully with mobile or unreliable
environments

Simple to design and implement

Small to moderate processing and memory
needs

Can be implemented fully distributed

Copyright: Anna Forster 2009
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Reinforcement Learning for WSNs?

All distributed problems:
Routing protocols
Clustering protocols
Neighborhood management protocols
Medium Access protocols

Further
Parameter optimization and learning
Application-level cooperation among nodes

Copyright: Anna Forster 2009

Decision Based Learning

Data classification

Copyright: Anna Forster 2009
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Decision Based Learning

Classifying objects into groups based on
attribute pairs

form = round
color = orange
> taste = sour

form =
color =
taste =

orange apple

Copyright: Anna Forster 2009

round
red, orange, green
sweet

Classifying objects into groups based on
attribute pairs

form = round
color = orange
> taste = sour

form =
color =
taste =

orange

form = 7
color = ?
taste = ?

e
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round
red, orange, green
sweet
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Decision Based Learning

Classifying objects into groups based on
attribute pairs

form = round
color = orange
. taste = sour

form =
color =
taste =

orange

form = round
??? ~ color = ?
taste = ?
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round
red, orange, green
sweet

Classifying objects into groups based on
attribute pairs

form = round
color = orange
. taste = sour

form =
color =
taste =

orange apple

4 form = round
??? ~ color = orange
taste = 7

e
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round
orange, red, green
sweet
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Decision Based Learning

Classifying objects into groups based on
attribute pairs

round form = round
orange color = orange, red, green
sour taste = sweet

orange apple

form = round
apple! - color = orange
taste = sweet
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Decision Based Learning

Classifying objects into groups based on
attribute pairs

form = round
color = orange
> taste = sour

form = round
color = orange, red, green
taste = sweet

orange

% taste = ?
??? -~ color = 7
= 2

form /
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Decision Based Learning

Classifying objects into groups based on
attribute pairs

] form = round
W color = orange
i I\ taste =  sour

form = round
color = orange, red, green
taste = sweet

orange

J
taste

apple! ~ color
form

1n
-~
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Decision Based Learning

Classifying objects into groups based on
attribute pairs

Which questions to ask first, which next?
Compute information gain of attributes

How well does an attribute separates
the testing set?

Copyright: Anna Forster 2009
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C4.5 algorithm

Goal: construct a decision tree with attribute at each node
Start at root
Find the attribute with maximal information gain, which is
not an ancestor of the node
Put a child node for each value of this attribute
Add all examples from the training set to the
corresponding child
If all examples of a child belong to the same class, put the
class there and go back up in the tree
If not, continue with step 2 while attributes are left
When no more attributes are left, put the classification of
the majority of the examples to this node

Copyright: Anna Forster 2009

C4.5 algorithm: Example

1 round red apple
2 round orange apple
round orange orange
round green  apple

round vyellow apple

o W

round orange orange

Information gain of FORM: zero
Information gain of COLOR: more

Copyright: Anna Forster 2009
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C4.5 algorithm: Example

1 round red apple

2 round orange apple

3 round orange orange red green orange yellow
4 round green  apple

5 round vyellow apple

6 round orange orange

Information gain of FORM: zero
Information gain of COLOR: more

Copyright: Anna Forster 2009

C4.5 algorithm: Example

1 round red apple

2 round orange apple

3 round orange orange red green orange yellow
4 round green  apple 1 4 2,3,6 5

5 round vyellow apple

6 round orange orange

Information gain of FORM: zero
Information gain of COLOR: more
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C4.5 algorithm: Example

1 round
2 round
3 round
4 round
5 round
6 round

red
orange
orange
green
yellow

orange

Copyright: Anna Forster 2009

apple
apple
orange
apple
apple
orange

Information gain of FORM: zero
Information gain of COLOR: more

red green orange
1 4 2,3,6
apple  apple ?

yellow

apple

C4.5 algorithm: Example

1 round
2 round
3 round
4 round
5 round
6 round

red
orange
orange
green
yellow

orange

Copyright: Anna Forster 2009

apple
apple
orange
apple
apple
orange

Information gain of FORM: zero
Information gain of COLOR: more

Only left attribute: FORM

red green orange
1 4 2,3,6
apple  apple
round
2,3,6
orange

yellow

apple

10/14/09
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C4.5 algorithm: Problems

1 round red apple

2 round orange apple

3 round orange orange red green orange yellow
4 round green  apple 1 4 2,3,6 5

5 round vyellow apple apple  apple apple
6 round orange orange

All orange apples will be classified as oranges

Leaf node FORM unnecessary
round

DECISION TREE DEPENDS ON TRAINING SET 23,6

orange

Copyright: Anna Forster 2009

Properties of Decision Based Learning

Good for fast classification of fuzzy,
overlapping groups

Tree generated only once
Well-suited for static, but error-prone
environments

Needs a good large training set
Moderate processing and large memory
requirements (to hold the training set)

Copyright: Anna Forster 2009
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Decision Based Learning for WSNs?

Static problems
Link quality classification
Network status classification
Battery level classification

Copyright: Anna Forster 2009

Genetic algorithms

Evolve and survive

Copyright: Anna Forster 2009
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Genetic algorithms

10/14/09
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Basic idea

Represent a solution to a problem as
an individual (bit string)

Create many individuals

Repeat until solution good enough

Evaluate the individuals based on a fitness
function

Select the best individuals, use them to create
new individuals

Example: Traveling Salesman Problem

119243

of the tour

7

Create random tours

Individual: bit string of cities

Fitness function: the length

7

5)

length: 20

length: 17

351

7063

Copyright: Anna Forster 2009

7

length: 22

length: 25

length: 21

1

length: 20
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Example: Traveling Salesman Problem

Crossover 1 length: 20

Copyright: Anna Forster 2009

Example: Traveling Salesman Problem

Crossover 1 length: 20
4 TS
1 28 48 )s | 5

27456 2

Copyright: Anna Forster 2009
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Example: Traveling Salesman Problem

Crossover 1 length: 20
1023 40 7|6 5
3021 40 56| 7 4
3
4
5!
6
7

Copyright: Anna Forster 2009

Example: Traveling Salesman Problem

Crossover 1 length: 20
123 4 3[6f 5
70201 4,567 2
. 3
Mutation
30201 4,567
5
6
7
Copyright: Anna Forster 2009
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Example: Traveling Salesman Problem

Crossover
1 23 4 3| 6 5
710 2 1 40 5 6 7
Mutation

32 11) s.l
~——

Copyright: Anna Forster 2009

1 length: 20

Example: Traveling Salesman Problem

Crossover

Mutation

EFEEE

Evaluate new generation,
REPEAT

Copyright: Anna Forster 2009

1 length: 20
2
3
4
5
6
7
2@3fafslef 7
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Properties of Genetic Algorithms

Search algorithms for very large search
spaces

Find near-optimal solutions to NP-hard
problems (e.g. TSP)

Very high memory and processing
requirements

Not flexible to changes in the environment
(add a new city to TSP)

Copyright: Anna Forster 2009

Genetic algorithms for WSNs?

Good for static problems with centralized
data processing:
centralized scheduling and clustering
optimal sensing coverage
optimal transmission power of nodes
deployment planning
Not suited for distributed error-prone
problems like routing, MAC protocols or
large-scale clustering

Copyright: Anna Forster 2009
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Swarm Intelligence

Distribute the thinking

Copyright: Anna Forster 2009

Swarm Intelligence

Biologically inspired from ants, bees, etc.
Small, restricted entities (agents)
Communicate through the environment (e.qg.
pheromones)

Solve problems not solvable for individual
agents

Copyright: Anna Forster 2009
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Swarm Intelligence: Shortest Paths

Video cordially provided by Prof. Luca M. Gambardella
Copyright: Anna Forster 2009

Swarm Intelligence: Bridging the gap

Video cordially provided by Prof. Luca M. Gambardella

Copyright: Anna Forster 2009
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Swarm Intelligence

Particle Swarm Optimization
Ant Colony Optimization
Honey Bee Algorithm

Copyright: Anna Forster 2009

Swarm Intelligence

Particle Swarm Optimization
Ant Colony Optimization
Honey Bee Algorithm

Copyright: Anna Forster 2009
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Ant Colony Optimization

Represent solution as a graph (e.g. find
shortest path between 2 nodes)

Initialize all edges in the graph with some
small amount of pheromone

Place ants at the source node

Ants take random decisions on which edge
to proceed based on placed pheromone or
that edge

When the destination is reached, ant
calculates fitness (goodness) of the solution
(path) and traverses the same path back to
lay additional pheromone

Ants converge on the shortest path, but
continue exploring other routes too

Copyright: Anna Forster 2009

Properties of Ant Colony Optimization

Fully distributed

Low memory and processing requirements
Moderate management requirements (see
next slide)

Very flexible to environmental changes
Very robust against failures and topology
changes

Copyright: Anna Forster 2009
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Ant Colony Optimization for WSNs?

Distributed problems such as unicast routing
Very flexible against topology changes, even high
speed mobility
Some additional communication overhead
needed for backward ants and pheromone sharing

Less suited for broadcast problems: breaks

the analogy with ants and changes the model

significantly

Copyright: Anna Forster 2009

Other Machine Learning Techniques

Copyright: Anna Forster 2009
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Neural Networks

input layer

High memory and processing
requirements for training
Small memory and processing
requirements for using

W

hidden layers

to Neural Networks”, Raul Rojas, 1996

set

Solution design non-intuitive
Online versions exist, but have high
resources requirements

Not suited when environmental
changes expected

Copyright: Anna Forster 2009

wt layer

Need large, carefully prepared training  picture from *A systomatic troduction

Heuristic Search

Well-known examples from routing in WSNs:
number of hops
Traditional heuristic search
Build the full search tree
Compute the value (goodness) of each node
Take the minimum value path local search space
Online heuristic search,
agent-centered search

Evaluate the direct neighborhood
of the agent (directly reachable
states)

Take the minimum valued one

Copyright: Anna Forster 2009
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Heuristic Search

Important difference to Reinforcement Learning:

the true, exactly calculated goodness values need to be available a-priori
at the nodes!

Resembles Q-Learning after the Q-Values have stabilized

local search space

Copyright: Anna Forster 2009

Mobile Agents

Often called (mistakenly!) ants

Small entities, traveling through the network
and gathering fresh information (e.g. routing
table entries)

Have nothing to do with machine learning,
swarm intelligence or any other type of
intelligence!

Good for keeping important information
fresh

Copyright: Anna Forster 2009
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Machine Learning Techniques

Summary and Property Overview

Copyright: Anna Forster 2009

Comparison of properties

ML Techniques | Memory

Computation | Toleranceto | Optimality
topology
changes

Init.costs | Add.
costs

required memory
for on-node
storage

Copyright: Anna Forster 2009

optimality of
derived solution
compared to a
centrally computed
optimal solution

required
processing on the
node or base
station

flexibility of the
found solution to
environmental
changes

required
communication or
processing costs
before starting
normal work

additional
communication or
processing costs
during runtime

10/14/09
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Comparison of properties

ML Techniques | Memory | Computation | Toleranceto | Optimality | Init.costs | Add.
topology costs
changes

Copyright: Anna Forster 2009

Comparison of properties

ML Techniques | Memory | Computation | Toleranceto | Optimality | Init.costs | Add.
topology costs
changes

Reinforcement medium
Learning

Copyright: Anna Forster 2009
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Comparison of properties

Add.
costs

Tolerance to Init.costs
topology

changes

ML Techniques | Memory | Computation Optimality

Reinforcement
Learning

Swarm medium medium

Intelligence

Copyright: Anna Forster 2009

Comparison of properties

Add.
costs

Init.costs

Tolerance to
topology
changes

ML Techniques | Memory

Computation Optimality

Reinforcement
Learning

Swarm medium medium

Intelligence

Heuristics

medium

Copyright: Anna Forster 2009
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Comparison of properties

ML Techniques | Memory

Reinforcement
Learning

Swarm medium
Intelligence

Heuristics

Mobile Agents

Copyright: Anna Forster 2009

Computation

Tolerance to | Optimality | Init.costs | Add.
topology costs

changes

medium
medium
medium

Comparison of properties

ML Techniques | Memory

Reinforcement
Learning

Swarm medium
Intelligence

Heuristics

Mobile Agents

Neural medium
networks

Computation

medium

Copyright: Anna Forster 2009

Toleranceto | Optimality | Init.costs | Add.
topology costs

changes

medium

medium
medium

10/14/09
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Comparison of properties

ML Techniques

Reinforcement
Learning

Swarm
Intelligence

Heuristics

Mobile Agents

Neural
networks

Genetic
algorithms

Memory

medium

medium medium

Copyright: Anna Forster 2009

Computation

medium

Tolerance to
topology
changes

medium

Optimality

medium

Init.costs

medium

Add.
costs

medium

Comparison of properties

ptimization

ML Techniques | Memory | Computation | Toleranceto | Optimality | Init.costs |Add. |
topology Distributed problems
changes

Reinforcement | low low high high medium low

Learning

Swarm medium | low high high high medium

Intelligence

Heuristics low low low/medium | medium high low

Mobile Agents | low low medium low low mediur I

mign

Neural medium | medium low high high low

networks

Genetic high medium low high high low

algorithms

Copyright: Anna Forster 2009

Centralized and localized problems
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Further readings

M. Dorigo and T. Stuetzle.
Ant Colony Optimization.
MIT Press, 2004.

T.M. Mitchell.
Machine Learning.
McGraw-Hill, 1997.

R. S. Sutton and A. G. Barto. A. Forster.

Reinforcement Learning: Teaching Networks How to
An Introduction. Learn

The MIT Press, March 1998. Sl SVH Verlag, 2009

J. Kennedy and R.C. Eberhart.
Swarm Intelligence.

Morgan Kaufmann, 2001.

Copyright: Anna Forster 2009

S.J. Russell and P. Norvig.
Artificial Intelligence:

A Modern Approach.

Prentice Hall International, 2003.
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Tutorial at NexTech 2009, Sliema, Malta

Dr. Anna Forster, University of Lugano, Switzerland

anna.foerster@ieee.org

Overview

Part 1:
Introduction to Wireless Sensor Networks
Machine Learning techniques and their
properties

Part 2:
State of the art applications of ML to WSNs
Discussion of further application areas and
problems
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Reinforcement Learning for WSNs

State of the art

Copyright: Anna Forster 2009

Q-Learningin WSN Routing

Agents: the packets

States: the nodes

Actions: next hops

g-values: estimations of routing costs
Initial g-values: some first guess about
routing costs

Reward function: the best cost estimation
of the next hop

Exploration strategy: simple, e.g. e-greedy

Copyright: Anna Forster 2009
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Unicast routing with RL

Sending a packet fromAto D Rewards:
Init all g values to 10 (guess) I = Qpesws If NOt SiNK
r=0, if sink
Send rewards to all neighbors
(broadcast)

Copyright: Anna Férster 2009

Unicast routing with RL

Sending a packet from A to D Action selection policy
Init all g values to 10 (guess) (Exploration strategy)
state | Q e-greedy

A 10 Balance exploration/exploitation

Qg = 10 (initial) 10
state | Q 10 @
B 10
C 10

Qc = 10 (initial)

state | Q
B 10
A 10
Copyright: Anna Forster 2009 P 10
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Unicast routing with RL

Sending a packet fromAto D
Select next hop (state) B

Qg = 10 (initial)

state | Q @
B 10
C 10

Copyright: Anna Férster 2009

Unicast routing with RL

tate | Q
Sending a packet fromAto D ==
B has 3 possible next hops, with |2 10
Qbest = 10 c 10
D 10
Q, = 10 (initial) Q, = 10 (initial)

Copyright: Anna Forster 2009
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Unicast routing with RL

. state | Q

Sending a packet fromAto D
B selects D as next hop, A 10
C 10

Copyright: Anna Férster 2009

Unicast routing with RL

. state | Q
Sending a packet fromAto D

B selects D as next hop, A 10

reward = qp.q = 10 c 10

Copyright: Anna Forster 2009
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Unicast routing with RL

. state | Q
Sending a packet fromAto D

B selects D as next hop, A 10

reward = qp.q = 10 C 10

Q,=10
Qg=cg+rg=11
Q, =10

Copyright: Anna Férster 2009

Unicast routing with RL

. state | Q
Sending a packet fromAto D

B selects D as next hop, A 10

reward = qp.q = 10 c 10

10
state | Q
B 11
C 10

Qg=cg+rg=11

state | Q
Qg=cg+rg=11

B 11

A 10

D 10

Copyright: Anna Forster 2009




Unicast routing with RL

Sending a packet fromAto D
D is the sink, goal reached

(&)
® ()
©

Copyright: Anna Férster 2009

Unicast routing with RL

Sending a packet fromAto D
D is the sink, goal reached
reward = o (real costs)

reward

reward

Copyright: Anna Forster 2009
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Unicast routing with RL

state | Q

Sending a packet fromAto D
D is the sink, goal reached A |
reward = o (real costs) C 10

A 10

Copyright: Anna Férster 2009

Sending a packet fromAto D
State of the network after first
acket
P state | Q
B |A 10
C 10
state | Q D 1 D
B 11 A
C 10
C
state | Q
B 11
A 10
Copyright: Anna Forster 2009 P 1
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Unicast routing with RL

Sending a packet fromAto D
State of the network after many
packets e |0
B ) A 3 How to go faster?
c Make better guesses!
2
state | Q D L D
B A
C 2
C
state | Q
B 2
A 3
Copyright: Anna Férster 2009 b 1

Unicast routing with RL

Benefits

Simple and powerful

Reacts immediately to changes:
New rewards propagate quickly
New routes are learnt

Only necessary changes in the immediate
neighborhood of failure

Route initialization is sink/source driven
Low memory and processing overhead

Copyright: Anna Forster 2009
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Unicast Routing with RL

Hops: too trivial to deserve a publication...
Maximum aggregation rate:

P. Beyens, M. Peeters, K. Steenhaut, and A. Nowe. Routing with compression in
wireless sensor networks: A Q-learning approach. In Proceedings of the 5th
European Workshop on Adaptive Agents and Multi-Agent Systems (AAMAS),
page 12pp., Paris, France, 2005.

Combined with geographic routing:

R. Arroyo-Valles, R. Alaiz-Rodrigues, A. Guerrero-Curieses, and J. Cid- Suiero.
Q-probabilistic routing in wireless sensor networks. In Proceedings of the 3rd
International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), pages 1-6, Melbourne, Australia, 2007.

Minimum delay:

J.A.Boyan and M. L. Littman. Packet routing in dynamically changing networks:
A reinforcement learning approach. Advances in Neural Information Processing
Systems, 6:671-678, 1994.

Copyright: Anna Forster 2009

Multicast Routing with RL

Challenges:

Actions need to reflect not the next
hop, but HOPS

Reward function is distributed among
several neighbors

Set of actions very large — needs a lot of e
exploration!

Solution steps:
Separate actions into sub-actions
Smart initial Q values

A. Forster and A. L. Murphy.

FROMS: Feedback routing for optimizing multiple sinks in WSN with
reinforcement learning.

In Proceedings 3rd International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP), pp. 371376, Australia, 2007.

Copyright: Anna Forster 2009
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FROMS: Multicast routing with Q-Learning

®  The minimum estimated is not the optimal:

rt(sb al‘)

Sy Ap Q

agent environment

Copyright: Anna Férster 2009

Localized view after sink announcement

®  best estimate for (A,B):3+3-1=5hops
" optimal for (A,B): 4 hops

FROMS: Multicast routing with Q-Learning

rt(sb at)

st’ Atl Qt

agent environment

Copyright: Anna Forster 2009

Agent: each node in the network

agent

10/14/09
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FROMS: Multicast routing with Q-Learning

" State: agent’s neighbors

rt(sb al‘)

Sy Ay Q

agent environment

agent

Copyright: Anna Férster 2009

FROMS: Multicast routing with Q-Learning

Agent: each node in the network
State: agent’s neighbors
Possible actions: combination of neighbors to reach
r{s»a, all sinks
sub-actions
s, A, Q, Actions:
- a; = {n, for A}{n, for B}

agent environment

for sinks A, B

for sink A for sink B
agent

Copyright: Anna Forster 2009
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FROMS: Multicast routing with Q-Learning

Agent: each node in the network
State: agent’s neighbors
Possible actions: combination of neighbors

Q Values: associate with
| |

rt(sb al‘)

each sub-action

®  computable for each (full) action

Sy Ay Q

agent environment

Q(n,, {A,B})

for sinks A, B
for sink A for sink B
Q(ny, {A}) Q(n, {B})

Copyright: Anna Férster 2009

FROMS: Multicast routing with Q-Learning

Agent: each node in the network
State: agent’s neighbors
Possible actions: combination of neighbors

rt(sf’af) Q Values: associate with sub-actions,
compute for actions

Initialize Q Values with number of estimated hops
Sp Ap Q

agent environment

Q(ny, {A,B}) = 4+4-1

for sinks A (4 hops)
B (4 hops)

Copyright: Anna Forster 2009
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FROMS: Multicast routing with Q-Learning

rt(sb al‘)

Sy Ay Q

agent environment
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Agent: each node in the network
State: agent’s neighbors
Possible actions: combination of neighbors

Q Values: associate with sub-actions,
compute for actions

Initialize Q Values with number of estimated hops
Environment: all other nodes

FROMS: Multicast routing with Q-Learning

rt(StJ at)

Sy Ap Q

agent environment

Copyright: Anna Forster 2009

Agent: each node in the network
State: agent’s neighbors
Possible actions: combination of

Q Values: associate with sub-actions,
compute for actions

Initialize Q Values with number of estimated hops
Environment: all other nodes

for sinks A,B

10/14/09
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FROMS: Multicast routing with Q-Learning

rt(Sb ar)

Sy Ay Q

agent environment
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Agent: each node in the network
State: agent’s neighbors
Possible actions: combination of

Q Values: associate with sub-actions,
compute for actions

Initialize Q Values with number of estimated hops
Environment: all other nodes

Reward: the best available Q value + 1 hop

@

for'sinks.A,B

FROMS: Multicast routing with Q-Learning

reward computation

e

Sy Ap Q

agen environment

</\> update rules

exploration strategy

Copyright: Anna Forster 2009

Agent: each node in the network
State: agent’s neighbors
Possible actions: combination of

Q Values: associate with sub-actions,
compute for actions

Initialize Q Values with number of estimated hops
Environment: all other nodes

Reward: the best available Q value + 1 hop
Update at neighboring nodes (learn)

(e

for'sinks.A,B

10/14/09
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Parameters of FROMS

Possible cost functions:
Any cost function defined over the edges or
nodes of the communication graph
Here: minimum hops to destinations
Further: minimum delay to the sinks;
s 1 minimum geographic progress; minimum
transmission power; maximum remaining

energy on the nodes; combinations; ...
Exploration strategy

rt(sb al‘)

agent environment

Balance exploration against exploitation
Depend on the used cost function
= Memory management

= Heuristics for pruning the available actions
and sub-actions

Copyright: Anna Férster 2009

Further Applications of RL to WSNs

Clustering for WSNs:

Anna Forster and Amy L. Murphy, Clique: Role-free Clustering with Q-Learning for
Wireless Sensor Networks, in Proceedings of the 2gth International Conference
on Distributed Computing Systems (ICDCS) 2009, 9pp., Canada, June 2009

MAC protocols:

Z.Liv and I. Elahanany. RL-MAC: A reinforcement learning based MAC protocol for
wireless sensor networks. International Journal on Sensor Networks, 1(3/4):117—
124, 2006.

Best coverage:

M.W.M. Seah, C.K. Tham, K. Srinivasan, and A. Xin. Achieving coverage through
distributed reinforcement learning in wireless sensor networks. In Proceedings
of the 3rd International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), 2007.

Copyright: Anna Forster 2009
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Reinforcement Learning for WSNs

Take away

First choice when solving complex
distributed problems in WSNs

Copyright: Anna Forster 2009

Decision Based Learning for WSNs

State of the art

Copyright: Anna Forster 2009
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Link Quality with Decision Trees

RSSI
sendBuf
fwdBuf
depth
CLA
pSend
pRecv

received signal strength indication
send buffer size

forward buffer size

node depth from base station
channel load assessment

forward probability

backward probability

local
local
local
non-local
local
local
local

MetricMap

Wang, Y., Martonosi, M. & Peh, L.-S. (2006). A supervised learning approach for
routing optimizations in wireless sensor networks, Proceedings of the 2nd
International Workshop on Multi-hop ad hoc networks: from theory to reality
(REALMAN), Florence, Italy, pp. 79-86.

Gathers information about links
Uses LQI (Link Quality Indication) to classify

links as good or bad

Copyright: Anna Férster 2009

Link Quality with Decision Trees

rssi <= 214: bad (8.0/1.0)

rssi > 214

| sendbuf <= 0

| | cla <= 21: bad (29.0/13.0)
| | cla> 21: good (2.0)

| sendbuf > 0: good (2.0)

rssi > 216: good (178.0/34.0)

rssi <= 219

rssi > 215
depth <= 7

depth > 7

rssi > 219
| depth <= 7
| cla <= 3: good (102.0/35.0)
| | cla> 3: bad (30.0/12.0)
depth > 7: good (85.0/17.0)

cla > 116: good 0)

62.0/8.
r&apyeightshan a7éd:rmﬁu 2009

resi <= 223 100 MelricMap —k—
cla <= M6 MintRoute —6—
fth <= 3: good (352.0/82.0)
depth > 3 g &
depth <= 4 Y
| rssi <= 220: bad (49.0/1.0) s 60
| rssi> 220 =
| | cla<=8: good (69.0/29.0) 2 */)I(/JT\%
| | cla> 8: bad (14.0/4.0) 8 a0
depth > 4 3
depth <= 6 g
rssi <= 216 < 20
depth <= 5: good (198.0/71.0)
depth > 5

o
0 05 1 15 2 25 3 35 4 45

resi <= 215: good (157.0/55.0)
08
rssi <= 217: bad (129.0/29.0)
| rssi> 217 e 08
| | cla <= 0: good (20.0/6.0) 8
| | cla > 0: bad (12.0/3.0) £
s
£ o4
| rssi <= 217: good (37.0/17.0)
| rssi > 217
| | cla <= 0: bad (21.0/3.0) 02
| | ecla> 0: good (2.0)

Offered load (pps)

(b)

MetricMap —%—
MintRoute

0
0 05 1 15 2 25 3 35 4 45

Offered load (pps)

(c)

RSSI value is the root!

Three initial
features ignored:
fwdBuffer, sendP
and recP

10/14/09
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Further Applications of Decision

Trees to WSNs

Classification of any localized, relatively static
properties:

Battery levels

Network conditions

Channel load

Node status

A lot of future work!

Copyright: Anna Forster 2009

Decision Trees for WSNs

Take away

Good choice when classifying
complex properties

Copyright: Anna Forster 2009

10/14/09

19



10/14/09

Ant Colony Optimization for WSNs

State of the art

Copyright: Anna Forster 2009

ARA - Ant Routing Algorithm for MANETs

Route discovery: forward ants

Mesut Gines; Udo Sorges & Imed Bouazizi.
ARA - The Ant-Colony Based Routing Algorithm for MANETSs. Proceedings of the 2002 ICPP Workshop
on Ad Hoc Networks (IWAHN 2002), Los Alamitos, CA, USA, 2002.
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ARA - Ant Routing Algorithm for MANETs

Choosing next hop:

Pi.j . .
Pij = 2 jen; Piv ifjeN;
o ifj ¢ N,

Probabilities of next hops sum to 1:
Zpi,jzla i €[1,N]

JEN;

Leave pheromone when choosing an edge:
Pij =i+ Ap

Decrease pheromone level with time (evaporate):

wij = (1—q) - gij q € (0,1]

Copyright: Anna Férster 2009

ARA - Ant Routing Algorithm for MANETs

Route discovery with forward/backward ants

Data packets follow the pheromones in one of two
modes:

Greedy:

- 1 wenn @, ; = maxeen, {@, ,}
41710 sonst

Probabilistic:

I
Yk eN; P i

i (pil»j' wenn j € N; Pij = Pij + AQ
Pa,j=
0 wenn j & N; pij = (1=q) vij g€ (0.1]

Copyright: Anna Forster 2009
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ARA - Ant Routing Algorithm for MANETs

Discussion

What are the consequences of greedy/probabilistic
routing to the development of pheromone levels on the
edges of the graph?

How failure resistant are both versions?

Is there any better option for taking routing decisions?
Compare the pheromone levels against Q-values

Leave pheromone when choosing an edge Greedy routing
. 1 wenn ¢}, . = maxen. {9, }
L . i d,j iLrd k
Pij = @ij+Ap Pa.j {0 sonst
Evaporate pheromone level Probabilistic routing
p— @, . .
viji=01-a) pij g€ (0,1] Py =4 T VoMM
0 wenn j ¢ N;

Copyright: Anna Férster 2009

Further options: AntHocNet

Separates route management from data routing

Ants traverse the network continuously and update
pheromone levels (using pervious formulas)

Data follows highest pheromone levels only
Discussion:

More communication overhead

Better resilience against mobility and failures

G. DiCaro, F. Ducatelle, and L.M. Gambardella. AntHocNet: an adaptive nature-inspired
algorithm for routing in mobile ad hoc networks. European Transactions on
Copyright: Anna Forster 2009

Telecommunications, 16:443-455, 2005.

10/14/09
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Ant Colony Optimization for WSNs

Take away

Needs careful design and planning

Good choice when topology is very
dynami

Copyright: Anna Forster 2009

Genetic Algorithms for WSNs

State of the art

Copyright: Anna Forster 2009
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Genetic algorithms for WSNs

High memory and processing requirements

Inflexible to environmental changes

Better suited for static, centralized problems
Optimal scheduling of a one-hop static network
Optimal placement (with error guard) of sensors

Optimal transmission radius (with error guard) for
each node

Optimal clustering of the network

Copyright: Anna Férster 2009

Genetic algorithms for WSNs

Environmental model needed to compute
fitness of given network instance
Simple, perfect communication model
Simulation
Real system (very costly when used with machine
learning!
Error analysis of solution required

Evaluate the effect of expected failures in the
network on the total behavior

Copyright: Anna Forster 2009
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Genetic algorithms for WSNs

Multihop routing (aggregation trees and their
usage):

O. Islam and S. Hussain. An intelligent multi-hop routing for wireless sensor networks.
In Proceedings of the IEEE/WIC/ACM international conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT), pages 239—-242, Hong Kong, 2006.

Optimal clustering:

S. Hussain, A. W. Matin, and O. Islam. Genetic algorithm for energy efficient clusters in
wireless sensor networks. In Proceedings of the 4th International Conference on
Information Technology (ITNG), pages 147— 154, Las Vegas, Nevada, USA, 2007.

Optimal scheduling in a static, reliable environment:

Q. Tang, N. Tummala, S.K.S. Gupta, and L. Schwiebert. Communication scheduling to
minimize thermal effects of implanted biosensor networks in homogeneous tissue.
IEEE Transactions on Biomedical Engineering, 52(7):1285-1294, 2005.

Copyright: Anna Forster 2009

Genetic Algorithms for WSNs

Take away

Very useful to solve complex multi-
parameter problems

Suited for static, centralized
i ts

Copyright: Anna Forster 2009
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Challenges for ML in WSNs

Open discussion

Copyright: Anna Forster 2009

Main challenges for current algorithms

Efficient on-node implementation

Real-world deployments

Copyright: Anna Forster 2009
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Future applications

Automatic parameter learning for

individual protocols

Automatic parameter learning for

cross-layer architectures

Distributed implementations of PSO and neural
networks

Efficient and robust routing protocol design with ant
colony optimization

Applications to neighborhood management and
MAC protocols

Copyright: Anna Férster 2009
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Optimizing Communications in Wireless
Sensor Networks with Machine Learning
Bibliography and Further Readings

Anna Forster
University of Lugano, Switzerland
anna.foerster@Qieee.org

October 11th, 2009, Sliema, Malta

Some recent surveys give an overview of applications of machine learning
and computational intelligence for wireless sensor networks [1, 12, 18, 23, 29,
36, 44, 58].

1 Neural Networks

General information about neural networks can be found in [3, 46].

Energy Aware Routing and Clustering. Neural networks have been
widely applied in WSNs. SIR [4] is an energy-efficient routing protocol, which
assigns a neural network to each node in the network. The nodes use beacons to
find out the quality of links to their neighbors and the information is fed into the
NN to learn the quality of the links. Routing is performed based on a modified
Dijkstra shortest-path algorithm from a source to a single sink using the learnt
link quality. The protocol performs well compared to Directed Diffusion [57],
but results in a high beacon overhead. Additionally, the implementation of a
neural network on each of the nodes has high memory requirements and might
be hard on memory-restricted sensor hardware.

Scheduling and Medium Access Protocols. A centralized neural net-
work has been applied to solve the optimal TDMA scheduling for a WSN in [55].
However, a centralized computation of schedules does not take into account link
asymmetry, link and node failures, mobility etc. Additionally, it incurs high
communication overhead to dissipate the schedules to the nodes.

2 Decision trees and case-based reasoning

A formal description can be found in [40].



Energy Aware Routing and Clustering. An application to link quality
classification in WSNs is presented in [66]. The authors use simple rules to
classify links into good and bad, based on the RSSI level of received packets,
buffer sizes, etc. The computation is done centrally on the base station and the
data model is disseminated to all nodes in the network.

3 Reinforcement learning

Reinforcement learning (RL) [31, 62] is biologically inspired, where the learning
agent acquires its knowledge by actively exploring its environment.

Energy Aware Routing and Clustering. One of the fundamental and
earliest works in packet routing using machine learning is Q-Routing [8]. The
authors describe a very simple, Q-Learning based algorithm, which learns the
best paths considering the least latency to the destinations. Possible actions are
next hops at the nodes, and a Q-Value is assigned to each pair (sink, neighbor)
representing the time which a packet needs through this neighbor to reach the
sink. Simulations proved the algorithm to be efficient under high network loads
and to perform also well under changing network topologies. Although the ap-
proach was developed for wired, packet-switched networks, it inspired a lot of
works in the wireless ad hoc and WSN communities, because it is fully dis-
tributed. A recent implementation on Crossbow motes [11] has demonstrated
its practicality.

Many other routing protocols have been inspired from Q-Routing [2, 6, 25,
37, 43, 53, 67, 68]. The main difference between them is the used cost metric
for routing. Delivery time is used in [37, 59], maximum compression paths are
learnt in [6, 25, 67], and geographic-based routing is implemented in [2, 53].
A novel cost metric is used by [43], where the routing protocol learns to avoid
“important” nodes: nodes, which after failing might disconnect the network.
Neighboring nodes exchange information about their importance (computed lo-
cally at the nodes based on full topology information) and the best routes (with
least important nodes on them) are learnt. A more general cost function is
defined in [68], where any combination of number of hops, delay, and remaining
energy on the nodes can be applied.

Another difference between the above approaches is the used reinforcement
learning algorithm. The authors of [37] use dual reinforcement learning, which
gives rewards not only for previous actions, but also to next ones. Thus, learning
converges faster and the protocol shows better performance. Q-Learning is used
by [2, 53, 67, 68, 19]

An energy-aware multicast routing protocol based on Q-Learning called
FROMS is presented in [19, 21]. Tts goal is to minimize the energy spent in
a network, while delivering packets to many sinks simultaneously. The idea
is based on an optimal broadcast Steiner tree, where a minimum number of
broadcasts are needed to deliver one packet from an independent source to all
sinks.



Team-partitioned, opaque-transition reinforcement learning (TPOT-RL) has
been developed for simulated robotic soccer [60] and applied to packet rout-
ing [59]. It allows a team of independent learning agents to collaboratively
learn a shared task, like soccer playing. It differs from traditional RL in its
value function, which is partitioned among the agents and each agent learns
only the part of it directly relevant to its localized actions. Also, the environ-
ment is opaque to the agents, which means that they have no information about
the next possible actions of their mates or their goodness.

A formal definition of RL in a distributed environment and a learning algo-
rithm is given in [17]. It presents a reinforcement learning algorithm, designed
especially for solving the point-to-point routing problem in MANETSs. Collabo-
rative RL (CRL) is greatly based on Q-Learning, but uses also a decay function
(similar to pheromone evaporation in ACO, see further Section 4) to better meet
the properties of ad-hoc networks.

An additional contribution of [25] beside the Q-Learning routing protocol is
the automatic learning of the optimal values of the parameters of the algorithm
with a Bayesian exploration strategy. The paper presents an idea which can be
applied to all other RL-based algorithms, which need parameter pre-setting and
should be further explored and refined.

The setting of [65] is similar to those presented above: many source nodes
are sending data to a single base station. The algorithm takes into account
the aggregation ratio, the residual energy on the nodes, the hop cost to the
base station and the link reliability between the nodes. The algorithm runs
in learning episodes. The learning agents are again the nodes and Q-Values
are assigned to each possible next hop at each node. During each episode, the
current Q-Values are used to route a packet to the base station. At each hop,
the full hop information is appended to the packet (residual energy, rewards,
etc.). Rewards are generated at the base station. When the base station has
enough such packets (undefined how many), it calculates the Q-Values offline for
the nodes in the network and disseminates them via a network-wide broadcast.

Clique [20] solves the problem by avoiding all-over the cluster head selection
process. It assumes the nodes in the WSN have some a-priori clustering informa-
tion, like a simple geographic grid or room or floor information in a building. It
further assumes that the possibly multiple sinks in the network announce them-
selves through network-wide data requests. During the propagation of these
requests all network nodes are able to gather 1-hop neighborhood information
consisting of the remaining energy, hops to individual sinks and cluster member-
ship. When data becomes available for sending, nodes start routing it directly
to the sinks. At each intermediate node they take localized decisions whether
to route it further to some neighbor or to act as a cluster head and aggregate
data from several sources. Clique uses Q-Learning to select the best decision.

Although all of the above studies show promising results from applying var-
ious reinforcement learning algorithms to routing in WSNs, none of them has
reached the state of a mature communication protocol with implementation
and evaluation in a realistic simulation and real hardware environment. Their
evaluations are rather preliminary and concentrate on a few of their properties,



leaving out important questions about overhead and efficient implementation.

Scheduling and Medium Access Protocols. Actor Critic Algorithm [47]
is a early reinforcement learning algorithm, where the policy is detached from
the leant action values. In current RL algorithm like Q-Learning the policy is
fully dependent on the learnt Q-Values, which represent the current state of
the value function. This incurs search overhead when the best Q-Value needs
to be found. In actor critic algorithm a separate table (called the actor) can
be defined together with the value table (called the critic) to speed up action
selection. This algorithm has been applied for example to point to point com-
munication in sensor networks [42]. The goal of the algorithm is to maximize
throughput per total consumed energy in a sensor network, based on node-to-
node communication. Given its current buffer size and last channel transmission
gain, the node decides the best modulation level and transmit power to maxi-
mize the total throughput per consumed energy. For this, the authors use the
standard RL algorithm and test their algorithm on a two-node and multinode
scenarios. Unfortunately no comparison to other state-of-the-art protocols is
presented in order to evaluate the gain of the RL algorithm.

RL-MAC [38] applies reinforcement learning to adjust the sleeping schedule
of a MAC protocol in a WSN setting. The MAC protocol is very similar in its
idea to the other WSN MAC protocols such as S-MAC or T-MAC. It divides
the time into frames and the frames into slots, where each node is allowed to
transmit messages only during its own reserved slot. However, unlike other
protocols, it changes the duration of the frames and slots according to the
current traffic. At the beginning of its reserved slot, the node first transmits
some control information, including also a reward for the other nodes. The
reward function depends on the number of waiting messages on the nodes and on
the number of successfully transmitted messages during the reserved slot. The
paper reports higher data throughput and lower energy expenditure compared
to S-MAC.

COORD, a distributed reinforcement learning based solution to achieve best
coverage in a WSN is presented in [51]. The goal of the algorithm is to coopera-
tively find a combination of active and sleeping sensor nodes in a sensor network,
which is still able to perform full covered sensing of the desired phenomena. For
this the authors propose three similar approaches, all based on Q-Learning. The
possible actions are two: transitioning from sleeping to active mode and back.
The sensor network is divided into a rectangular grid and the goal is to cover
each grid vertex by some sensors, best by exactly one. A Q-Value is assigned to
each grid vertex, which represents the number of sensor nodes, currently cov-
ering this vertex. In each run of the algorithm, each node evaluates its current
Q-Value table with all grid vertices it covers and takes an action. After that,
all nodes evaluate again their Q tables and so on.

The other two solutions are very similar and the results they show are also
comparable. A comparison to some state-of-the-art approach is not provided
and thus the results cannot be properly evaluated. Also, a clear protocol im-
plementation is missing, leaving open many questions about coordination and



exchange of Q-Values and the states of the grid vertices. However, the approach
is fully distributed and can be run online if needed. Also, it shows a nice model-
ing work of converting a centralized problem into a distributed one and solving
it with RL.

4 Swarm Intelligence

A good introduction to swarm intelligence for wireless communications is pre-
sented in [32]. A more general overview of Swarm Intelligence can be found
in [33, 15, 16].

Energy Aware Routing and Clustering. Four variants of PSO are pro-
posed for energy aware clustering in [24]. The difference between them are the
PSO parameters - initial speed, acceleration, etc. Although PSO is a distributed
algorithm, here the algorithm is centralized and run on the base station with full
topology information about the network. The algorithm is based on a simple
idea that for a group of nodes that lie in a neighborhood, the node closest to the
base station becomes the clusterhead. The approach has some drawbacks: Clus-
tering depends solely on the physical distribution of nodes and is centralized.
Thus, in case of failures or any topology changes, the new information needs to
be gathered at the base station and clustering needs to be re-computed.

A novel clustering approach for WSNs called CRAWL is defined in [5] with
the use of soldier ants. Biological soldier ants that have the support of other sol-
dier ants are found to be more aggressive in nature. An ant is observed to exhibit
higher eagerness to fight when it is amidst strong ants. This fact inspires the col-
laborative clustering algorithm for wireless sensor network longevity (CRAWL)
that possesses good scalability and adaptability features. Here, each node has
an Fagerness value to serve as a clusterhead, which is computed based on its
own remaining battery and the remaining batteries of its neighbors. At reg-
ular intervals, each node computes its Fagerness value and broadcasts it over
the network. The node that has the highest Fagerness value decides to act as
a clusterhead, and the other nodes accept it. The clusterhead floods the new
clustering information, which helps other nodes to readjust their power levels
just enough for them to transmit to the clusterhead.

The method assures that only the nodes that have sufficient energy in their
reservoir, and have strong neighbors, opt to become clusterheads. The algorithm
has a significant communication overhead due to the fact that each node has to
flood its Fagerness value at regular intervals. In addition, the traffic of packets
might flow away from a sink node just because a node in that direction has
higher Eagerness. Thus, the algorithm is sub-optimal in terms of minimizing
energy expenditure of individual nodes, but optimal in terms of making effective
use of the energy available to the whole network.

AntNet [13] is an ACO application in communication networks used to find
near-optimal routes in a communication graph without global information. The
agents are divided into forward and backward ants. Forward ants are initial-



ized at the data source and sent to all known destinations at regular intervals.
They travel through the network graph by randomly choosing the next hop
and leave pheromones on their way. The more ants have chosen the same path
the higher the pheromone level of that path. During their travel, forward ants
gather routing information, indicating the arrival time at each node on their
way. At destination arrival, the forward ants are transformed into backward
ants and use the cashed route they have traveled to traverse the same route
again and to update the pheromone tables according to the gathered routing
information. Details of this computation can be found in [13, 14]. A decay func-
tion is implemented as evaporation of the pheromone levels, indicating which
routes are the most freshly used ones. The version of AntNet for MANETS is
called AntHocNet [14] and is developed by the some of the authors of AntNet.

AntNet and AntHocNet use both reactive path setup and proactive path
maintenance for single source - single sink. However, the approach requires ants
to be traveling independent from data packets and even to trace each path twice
(forward and backward), which causes a great overhead and is not well suited
for energy-restricted WSNs. Nevertheless, the method is fully distributed and is
the one best explored and described in the literature for using swarm intelligence
in wireless networks.

MANSTI [54] (Multicast for Ad Hoc Networks with Swarm Intelligence) is
a multicast routing protocol for MANETS, based on swarm intelligence. The
protocol is similar to traditional multicast protocols, where a core node initiates
the building of the multicast tree through a forward Join Request Packet and
a backward Join Reply Packet. However, nodes different from the core send
ants into the network at regular intervals to explore the network for better
routes to the core, leaving routing information (pheromones) on their way. This
information is later used by following ants for opportunistically selecting their
next hops. The approach is similar to AntHocNet [14], however, optimization
is applied to multicast instead of unicast routing.

In [41], the authors propose an AntHocNet [14] based approach for routing
in a sensor network installed in a building. Its main disadvantage is that the
returning ants in the network create unnecessary overhead for a sensor network.

Ant-Based Control [50] is similar to AntNet in many aspects, but also has
some important differences. There is only one class of ants, started at regular
intervals at the data sources, traversing the network probabilistically and up-
dating the routing tables as they travel to the destinations. Once reaching their
destination, the ants are eliminated. The update of the routing tables is thus
not based on the trip times to the destination, but rather on the present lifetime
of the ant, calculated as the delay from its launching node to the present one.
Because of its relatively smaller communication overhead (only forward ants),
ABC is better suited for energy-restricted scenarios like WSN. However, it is
still costly to send ants at regular intervals and the advantages of using it should
be carefully evaluated.

UniformAnts [61] presents a simple ant-optimization based technique for
finding and maintaining routes in a MANET. Similarly to the original ABC
algorithm, it uses only forward ants, updating the probability-based routing



tables on the nodes as the ant travels towards the sink. Two different ant types
are used, the difference is how the next hop is selected - greedy or uniformly
between all options. The method achieves fairly good results and shares the
properties of ABC.

Mobile agents are often mistaken for a machine learning or swarm intelligence
approach. However, they refer to the usage of simple, small entities (packets),
which traverse the system (in our case the network) and deliver fresh infor-
mation to the system’s nodes. In the case of routing, for example, the agents
update routing information (paths or next hops) on the nodes [7, 9, 64]. Al-
though very efficient in some applications (like routing in less mobile scenarios),
they cannot be classified as a learning nor as a swarm intelligence algorithm.
They represent a good optimization to traditional routing approaches in mobile
scenarios. However, they also increase the communication cost for sending the
agents.

5 Genetic algorithms
General information about genetic algorithms can be found for example in [49].

Energy Aware Routing and Clustering. A GA based multi-hop rout-
ing technique named GA-Routing is proposed in [28] for maximizing network
longevity in terms of time to first node death. The proposed GA approach gen-
erates aggregation trees, which span all the sensor nodes. Although the best
aggregation tree is the most efficient path in the network, continuous use of this
path would lead to failure of a few nodes earlier than others. The goal of the
study in [28] is to find an aggregation tree, and the number of times a partic-
ular tree is used before the next tree comes in force. The spanning trees are
modeled as individuals. Simulation results show that GA gives better lifetime
than the single best tree (SBT) algorithm, and the same lifetime as the cluster
based maximum lifetime data aggregation algorithm [10] for small network sizes.
However, the algorithm’s overhead if not evaluated.

Another application of GA in energy efficient clustering is described in [27].
The proposed GA represents the sensor nodes as bits of chromosomes, cluster-
heads as 1 and ordinary nodes as 0. The number of bits in a chromosome is
equal to the number of nodes. The fitness of the chromosomes are computed
based on the distances between the nodes and the cluster heads, the distance
between the cluster heads and the sink and the energy spent to deliver packets
to the sink. The results show that the GA approach possesses better energy
efficiency than do hierarchical cluster based routing (HCR) and LEACH [45].
However, clustering overhead is not considered.

There are also some other similar ideas based on GAs, where a base station
computes the optimal routing, aggregation or clustering scheme for a network
based on the information about the topology, remaining energy on the nodes,
etc. [26, 39, 63]. Such algorithms are only feasible if the network is expected
to have a static topology, perfect communication, symmetric links and constant



energy. Under these restrictions, a centrally computed routing or aggregation
tree makes sense and is probably easier to implement. However, these properties
are in conflict with the nature of WSNs.

Scheduling and Medium Access Protocols. A model based on GA is
proposed for sleep scheduling of nodes in a randomly deployed large scale WSN
in [56]. Such networks deploy a large number of redundant nodes for better
coverage, and how to manage the combination of nodes for a prolonged network
operation is a major problem. The scheme proposed in the article divides the
network life into rounds. In each round, a set of nodes is kept active and the
rest of the nodes are put in sleep mode. It is ensured that the set of active
nodes has adequate coverage and connectivity. When some of the active nodes
die, blind spots appear. At this time, all nodes are woken up for a decision on
the next set of nodes to remain active in the next round. This is clearly a multi-
objective optimization problem. The first objective is to minimize the overall
energy consumption of the active set, and the second objective is to minimize
the number of active nodes. Again, gathering the topology information on a
single base station is critical and not feasible in a realistic scenario.

A similar scheduling problem called the active interval scheduling problem in
hierarchical WSNs for long-term periodical monitoring is introduced in [30]. In
this scenario, nodes are partitioned into clusters with local cluster heads, which
dictate active intervals to the nodes. Active intervals need to be coordinated
among clusters to avoid intra-cluster interference and minimized to minimize
energy expenditure. Again, the proposed algorithm is centralized and does not
take into account crucial WSN properties such as failures.

6 Heuristic Search

General information can be found in [34, 35].

Energy Aware Routing and Clustering. Real time heuristic search
methods are very well suited for wireless ad-hoc scenarios - the nodes in the
network can be modeled as the agent states, the packets as the agents and the
information available at the nodes about their one-hop neighbors can be used
for evaluating the search neighborhood. LRTA* is applied to routing in ad-hoc
networks in [48, 52] with good results. However, the need of a global heuristic
limits the applicability of the algorithm in distributed environments.

7 Implementation of Machine Learning for WSNs

Experience from implementing a Q-Learning based routing algorithm on real
hardware is presented in [22].
Standard libraries for implementing various ML techniques are Spider for



Matlab', Pybrain for Python?, many others for neural networks and decision
trees.
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