
In Search of Design Patterns
for Evolvable Modularity

Prof. dr. Herwig Mannaert

IARIA Computation World, Athens, 2009

1

Contents

• Evolvability in Software Systems

- Challenges

- Solutions

- Reflections

• In Search of Evolvable Modularity

- Principles

- Elements

- Reflections

• Conclusions

2

Contents

• Evolvability in Software Systems

- Challenges

- Solutions

- Reflections

• In Search of Evolvable Modularity

- Principles

- Elements

- Reflections

• Conclusions

3

The Business Challenge

• The Agile Organization

- Continually scans its ecosystem

- Reacts quickly to opportunities and is innovative

• Has 2 Characteristics

- Complexity

• Multi-channel vs. single channel

• Diversify offerings/Additional services

- Change/Evolvability/Flexibility

• “These things are changing so fast it’s invention in the
hands of the owner.” (Hansen et al., 2007)

4

The ICT Challenge – Part 1

• Modular structures of Information Systems in this
complex, quickly changing environment, need to be:

- Very flexible

- Reliable (even mission-critical)

- Totally secure

- User friendly

- Portable

- Preferably affordable !

- ...

5

The ICT Challenge – Part 2

• Complexity
- Compare JEE/.NET to COBOL

- …

• Change
- Structured Development – 70’s

- Object Oriented Development – 80’s

- Component-Based Development – 1995-

- Service-Oriented Development – 2000-

- The Next Hype…

6

The ICT Challenge – Part 3

The Law of Increasing Complexity

Manny Lehman

“As an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is done

to maintain or reduce it.”

Proceedings of the IEEE, vol. 68, nr. 9, september 1980, pp. 1068.

7

Lehman’s Law

• Suggests
- Interpretation 1

• Even if we can (ever) offer the desired levels of evolvability in information
systems, these evolvability levels automatically decrease over time,
unless ever increasing perfective maintenance is performed

- Interpretation 2
• That the marginal cost of a change to a system, is ever increasing over
time

- Interpretation 3
• That systems

- Require ever higher budgets
- Require ever larger IT-departments
- Eventually have to be replaced anyway, thereby effectively writing off the
complete investment in the development and maintenance of the system !

- Interpretation 4
• As change increases, complexity increases, so the two main challenges
seem interrelated

8

Contents

• Evolvability in Software Systems

- Challenges

- Solutions

- Reflections

• In Search of Evolvable Modularity

- Principles

- Elements

- Reflections

• Conclusions

9

The Good News - Modularity

• Very complex systems already exist, for example, in
hardware, telecommunications, space industry.

• They are based on proven engineering concepts such
as:

- Modularity

- Standards

10

Modularity in Software

• Modularity has been the basis of Information
Systems Design since the ’60s

- Has proven its relevance in the past => no
hype !

- And will probably play a decisive role in the
future

• Independent of programming language,
packages, frameworks, even paradigms !

11

The Promise of Modularity

“expect families of routines to be constructed on rational
principles so that families fit together as building blocks”

uit: McIlroy, Mass Produced Software Components,
1968 NATO Conference on Software Engineering, Garmisch, Germany.

12

Modules – Advantages

Complexity Reduction

Reuse

Evolvability

13

Modularity - Constructs

• Modules are implemented in constructs, which
are becoming increasingly powerful
- Functions/procedures,

- Objects,

- Components

- Services

- Aspects

- …

• We are making progress !

14

Designing Modules - Coupling

• Coupling is a measure of the dependencies
between modules

15

Designing Modules - Cohesion

• Cohesion is a measure of how strongly the
elements in a module are related

• Good design=

Low coupling and high cohesion!

16

Contents

• Evolvability in Software Systems

- Challenges

- Solutions

- Reflections

• In Search of Evolvable Modularity

- Principles

- Elements

- Reflections

• Conclusions

17

The Dream: Doug Mc Ilroy

“expect families of routines to be constructed on rational
principles so that families fit together as building blocks”

uit: McIlroy, Mass Produced Software Components,
1968 NATO Conference on Software Engineering, Garmisch, Germany.

18

The Reality: Manny Lehman

The Law of Increasing Complexity

Manny Lehman

“As an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is done

to maintain or reduce it.”

Proceedings of the IEEE, vol. 68, nr. 9, september 1980, pp. 1068.

Better constructs,

but how to design evolvable modular structures
with them?

Low coupling and high cohesion. Everybody
knows this. The question is how to do this.

20

Example: Minimize Coupling !

21

The Problem – Part 1

• Different opinions about ‘good’ design

- “Low coupling” is too vague !

- “Information hiding” was formulated by Parnas in
1972, but still needs to be refined

- Philippe Kruchten (2005): “We haven’t found the
fundamental laws in software like in other engineering
disciplines”

• Limited, unsystematic application of ‘good’ design

- Technical difficulties

- Project Management difficulties

22

The Problem – Part 2

• Modularity in other disciplines, like hardware and
space, is static modularity. It does not
accomodate continuous changes.

We need evolvable modularity.

• Design, the mapping from functional requirements
to constructive primitives, is a complex activity.

It cannot be done on a 1-1 basis.

23

The Theories – Part 1

• Stability in System Dynamics:

- In systems theory, the dynamic evolution is
studied based on a differential/difference equation

- A system is stable if and only if:

• a bounded input results in a bounded output

• it has poles in the left plane or inside the unit circle:

- For a first order model, stability �� a<0:

• dy(t)/dt = x(t) + ay(t) �� Y(s)/X(s) = 1/(s-a)

• y[k+1]-y[k] = x[k] + ay[k] �� Y(z)/X(z) = 1/(z-(1+a))

- This means that the increment cannot have a
positive contribution from the size of the system

24

Example: Enterprise Service Bus

• The effort to include an additional component
may or may not vary with the system size

Impact = N Impact = 1

Source: http://nl.wikipedia.org/wiki/Enterprise_Service_Bus

25

The Theories – Part 2

• Entropy in Thermodynamics:

- In thermodynamics, the dynamic evolution is
represented by the entropy of a system

- A system will always increase its entropy, which
basically represents the irreversibility in nature

- In statistical thermodynamics, Boltzmann defined
entropy as the number of possible microstates for a
given macrostate, such as:
• a number of coins with or without partitions

• gas container with or without partitions

- In information theory, Shannon defined entropy
similarly as the expected value of uncertainty:

- Σi p(xi) log(p(xi))

26

Example: Workflow Controllers

• The effort to debug a system after adding
another component may or may not increase

Uncertainty = N Uncertainty = 1

27

Contents

• Evolvability in Software Systems

- Challenges

- Solutions

- Reflections

• In Search of Evolvable Modularity

- Principles

- Elements

- Reflections

• Conclusions

28

Basic Information Systems Model

• Context:
- Technology environment: language/package/…
acting as omnipresent background technology

- Software entities: instantiations of constructs

• Primitives:
- Data entity: entity with attributes and/or links

- Action entity: entity representing operation at a
modular level, containing one or more tasks

- Task: chunk of code performing a functionality,
considered to be a change driver

- External technology: presence of entities of
another technology environment, implies a task !

29

Model and System Stability

• Y[k]: the number of all software entities at k,
including the various versions

• X[k]: the number of (versions of) software
entities to be added to the system at k

• Y[k+1]: the number of all software entities at
k+1 when the system works again properly

• Stability: the output function Y stays bounded
for every bounded input function X

• aY[k] = combinatorial effects

30

Model and System Entropy

• Macrostate: an observable output and or state
of the information system

• Microstate: the whole of all states and results
of all software entities of the running system

• Partitions: software entities that externalize
the system state of control and/or workflow,
i.e. transactions

31

Stability and Normalized Systems

• Systems theoretic stability: bounded input
results in bounded output for infinite time

• Software stability: bounded amount changes
results in bounded impacts for infinite time

• Assumption of unlimited system evolution:
number of all primitives and all dependencies
between them become unbounded

• Normalized systems: information systems that
are stable wrt defined set anticipated changes

• Postulate: Information systems need to be
stable wrt defined set of anticipated changes

32

Basic Information Systems Model

• Changes:

- Additional data entity

- Additional data attribute

- Additional action entity, incl. receive/call existing

- Additional task version, incl. mandatory/new state

• Assumptions:

- Unlimited number of entities

- Unlimited number actions receiving 1 data entity

- Unlimited number actions calling 1 action entity

- Unlimited number of versions of 1 task

33

Separation of Concerns

• An action entity can only contain a single task

• Proof (RaA):

- Action entities Ei combine A with version Bi
- Additional mandatory version of A (change 4)

- Number impacts Ei unbounded (assumption 2)

• Manifestations:

- Multi-tier architectures

- External workflow systems

- Separating cross-cutting concerns

- Use of messaging, service, integration bus

34

SoC: Multiple Version Task

A

B1

A

B2

A

B3

A

B4

A A A A

35

SoC: Applying Theories

• Stability:

- X[k]: new version of task A

- aY[k]: the various new versions of the entities
due to the multiple versions of B

• Entropy:

- Macrostate: successful outcome of A+B

- Microstates: the possible versions of the
combined entity that may have been used and
that may hide that A is not working properly in
another version

36

SoC: Non-Encapsulated Task

A B C D

37

Example: Enterprise Service Bus

Impact = N Impact = 1

Source: http://nl.wikipedia.org/wiki/Enterprise_Service_Bus

38

Data Version Transparency

• Data entities received/produced by action
entities need to exhibit version transparency

• Proof (RaA):

- Action entities Ei receive D

- Additional attribute in D (change 2)

- Number impacts Ei unbounded (assumption 2)

• Implementations:

- XML / Web Services at run-time

- OO / JavaBeans at compile-time

- Tag-Value pairs in legacy systems

39

DvT: Multiple Version Data

A B C D

40

Action Version Transparency

• Action entities called by other action entities
need to exhibit version transparency

• Proof (RaA):

- Action entities Ei call A

- Additional version of A (change 4)

- Number impacts Ei unbounded (assumption 3)

• Implementations:

- OO facade patterns

- Procedural wrapper functions

41

AvT: Changing the Interface

X

42

Separation of States

• The calling of an action entity by another
action entity needs to exhibit state keeping

• Proof (RaA):
- Action entities Ei calling action entity A

- Additional version of A new state (change 4)

- Number impacts Ei unbounded (assumption 3)

• Implications:
- Stateful workflow systems

- State related to instance of data entity

- No stateless synchronous pipelines allowed

• Manifestation: async communication systems

43

SoS: Non-Encapsulated State

A B C D

X

44

SoC: Applying Theories

• Stability:

- X[k]: new version of task X

- aY[k]: the various new versions of the tasks A, B,
C, and D that cope with the new condition

• Entropy:

- Macrostate: unsuccessful outcome of A+X

- Microstates: the fact that A might have failed, or
X, or A might have reacted in an inappropriate
way to the failure of X

45

Normalized Systems Principles

• Presented principles solve the vagueness in
identifying combinatorial effects:

- Until now, no clear principles

• � subjectivity, ad hoc

- McIlroy: “to be constructed on rational principles”

• Conclusion

- Omnipresent CE � No evolvable modularity !

46

Contents

• Evolvability in Software Systems

- Challenges

- Solutions

- Reflections

• In Search of Evolvable Modularity

- Principles

- Elements

- Reflections

• Conclusions

47

Towards Elements

• Dealing with CE

- Mostly implicitly

• The principles reflect well-known heuristic knowledge of designers

- Mostly manual (even refactoring is only semi-automatic)
• Without generally-accepted principles or laws

• Without systematic application of ‘good’ design

• …

- And will remain manual even with improved constructs,
which have been and will continue to be developed/improved
gradually over time

- Proposed principles can be applied, but even this is a manual
approach…

48

Normalized Systems Elements

• The proposed solution =

- Structure through Encapsulations, called Elements
• A Java class is encapsulated in 8-10 other classes, dealing with
cross-cutting concerns, in order to deal with the anticipated
changes without CE, and fully separating the element from all
other elements.

• Every element is described by a “detailed design pattern”. Every
element builds on other elements.

• Every design pattern is executable, and can be expanded
automatically.

- Realizing the core functionality of Information Systems

• Application = n instantiations of Elements

49

Normalized Systems Elements

Encaps

Remote

Access

Persist

Transac

Service

50

Choosing the Elements

• The same old primitives we have been using
for more than 6 decades:

- Data (registers, structs, records)

- Actions (instructions, functions, procedures)

- Connectors (IO commands)

- Workflow (controllers, main programs)

• The elements should bridge the gap between
antropomorphism and separation of concerns

51

Building NS Applications

Requirements
Con-
nector

Work-
flow TriggerActionData

NS Application
=

n Instances
of Elements

Elements

52

Contents

• Evolvability in Software Systems

- Challenges

- Solutions

- Reflections

• In Search of Evolvable Modularity

- Principles

- Elements

- Reflections

• Conclusions

53

Normalized Systems Elements

• Characteristics

- Ex ante, proven evolvability
• Wrt anticipated changes
• Changes in packages, frameworks, programming languages...

- True Black Box, as the inside of an instantiation of
the element is ‘known’, and therefore does not
require black box inspection by the user.
• McIlroy: “safely to regard components as black boxes”

- True Black Box realizes Reuse
• McIlroy: “families fit together as building blocks”
• One cannot reasonably expect that modules can be systematically reused,
when there are no generally-accepted principles for dealing with coupling
and hundreds of developers are concurrently working on the same
information system…

- True Black Box controls Lehman
• Any degradation does not affect other elements

54

NS Elements

• Proposed elements offer evolvable modularity

- Infinite and controlled evolution of information systems

- System-theoretic bounded input/bounded output

- No Lehman, but McIlroy !

- Ex ante, proven evolvability

• Evolvable modularity is based on Structure

- Extremely fine-grained modular structure

- Extremely systematic application of the principles

- NOT on advanced code generation

• And leads to Determinism

55

The Cost of Modularity

Modularity

Complexity

NS
Traditional
Development

56

Implications on Constructs

• The OO class is an unprotected construct:

- Allows data and action encapsulation

- Allows many concerns and combinatorial effects

- Does not enforce any evolvability constraints

• More recent augmentations are consistent:

- JavaBean component model

- Server-side component models

- Service oriented architectures

- Aspects for cross-cutting concerns

57

Other Issues: Performance

• Stability theorems

- No stateless sync
pipelines are allowed

- Calling an action needs
to exhibit state keeping

- We do not have a
theorem for this

- No stateless sync
pipelines are allowed

- An action can only
contain a single task

• OLTP commandments

- Do not lock a system
resource too long

- Use transactions to
clean up your mess

- Reuse resources across
clients

- Come in, do your work,
and get out

- Deal with large number
of small things

58

Other Issues: Testing / Docs

• In order to obtain stable building blocks, we propose
the encapsulation of software entities into higher-level
stable elements according to structures implied by the
stability theorems.

• This structured composition of entities into the higher-
level elements can be described as “design patterns”,
that are detailed, unambiguous, and parametrized.
Therefore:

- Both unit and integration testing of such a stable
building block should become a trivial thing.

- The complete and unambiguous documentation of the
building block should consist of the documentation of
this design pattern and the expansion parameters.

59

Contents

• Evolvability in Software Systems

- Challenges

- Solutions

- Reflections

• In Search of Evolvable Modularity

- Principles

- Elements

- Reflections

• Conclusions

60

Conclusions

• The Challenges are Complexity and Evolvability

• The Answers are Modularity and Determinism

- High-quality IT: advanced modular structures of proven
evolvability are needed to realize McIlroy and withstand
Lehman !
• Leads to required levels of determinism not offered by current
methodologies, architectures, patterns…, that do not eliminate CE.

- Low-quality IT: vague and unsystematic approaches to
evolvability should be replaced by systematic approaches !

- Progress has been made, but no magical solution !

• Normalized Systems

- Principles are constraints on modular structures.

- Stable Information Systems should be composed of
Elements, complying at all times with the principles.

61

Thank you for your attention !

For more information:
herwig.mannaert@ua.ac.be

