

· Integration with the development processes

DEPEND 2009, Athens/Glyfada, Greece, June 18,200

DEPEND 2009, Athens/Glyfada, Greece, June 18,2009

Current situation

ambe

7

- The situation today is not good!!!
- Spreadsheets and other specific tools to analyze results
 - -Not standard and difficult to build
- Difficult to compare data and generalize conclusions
- Researchers share final results and conclusions – Papers, mainly
 - -Raw data is not shared
 - DEPEND 2009, Athens/Glyfada, Greece, June 18,2009

ADR Vision and objectives Vision Become a worldwide repository for dependability related data Key objectives: Provide state-of-the-art data analysis Allow data comparison and cross-exploitation Facilitate worldwide data sharing and dissemination Potential tool to increase the impact of research

DEPEND 2009, Athens/Glyfada, Greece, June 18,2009

Bl includes reporting and analytics
 DEPEND 2009, Athens/Glyfada, Greece, June 18, 2009

12

Example – Retail sales

- · Set of stores belonging to the same enterprise
- · Goal: Analysis of sales
- Each store has several departments (food, hygiene and cleaning, etc)
- · Sells thousands of products
- · Products are identified using a unique number

DEPEND 2009, Athens/Glyfada, Greece, June 18,2009

POS - point of sales
Operational database
What to measure?
Sales
Goals?
Maximize the profit
Maximum sales price possible
Lower costs – More clients

DEPEND 2009, Athens/Glyfada, Greece, June 18,2009

Retail sales - Business data

· Where to collect the data?

DEPEND 2009

amber

41

Marco Vieira, University of Coimbra, Portugal

42

ambe

Granularity	ber
 Example: record the daily sales for all product – Analyze in detail (price, quantity, etc) the product sold every day, in each store, 	
 Retail sales granularity: – Products x Store x Promotion x Day 	
 The granularity defines the detail of the DW a has a strong impact in the size 	Ind
 The granularity must be adjusted to the analysis requirements 	
DEPEND 2009, Athens/Glyfada, Greece, June 18,2009	46

- 1. Definition of the adequate star schema to store the data. Create the tables in the data warehouse
- 2. Use general-purpose loading application to define the loading plans for each table in the star schema
- 3. Run the loading plans to load the star tables with the raw data collected from the experiments
- Every time a new experiment is done corresponding loading plans are run again to add the new data to the data warehouse
- Analyze the data: calculate measures, find unexpected results, analyze trends, etc
 DEPEND 2009, AthensiGividada, Greece, June 18, 2009

Example: Recovery and Performance Evaluation in DBMS

- Tuning of a large DBMS is very complex
- Administrators tend to focus on performance tuning and disregard the recovery features
- Administrators seldom have feedback on how good a given configuration is
- A technique to characterize the performance and the recoverability in DBMS is needed

DEPEND 2009, Athens/Glyfada, Greece, June 18,2009

amber

65

66

ambei

Analyze the data: Ex answer	amp	ole o	f c	lu	ery	1		6	an	nbe	P r
🔑 Oracle Discoverer -	Recovery_	Time.DIS]				1	- 🗆 ×	1			
Elle Edit Sheet Tool:											
) 🎞 🖽 I	🖽 🖄 🛄] i 🗐 i	1 1	τ Σ	%4	77				
	Recovery Time	400,0		R	ecovery	Time					
Description		350,0	í								
Delete tablespace	369	300,0					\square				
Delete database object	350	250,0 200,0			\vdash	-	+				
Delete datafile	68	150.0		-	+	+	+				
Any operator fault	37	100,0				-					
Shutdown abort	22	50,0									
Set datafile offline	7	0,0	T T	19	5 5	e e	e				
Set tablespace offine	1	sba	opi	latat	orfa nah	6	W.				
		Delete tablespace	atabase	Delete datafile	kny operator fault Shumhnum ahort	Set datafile offine	Set tablespace offline				
		Del	Delete database object		Ψ	Set	Settab				
Sheet 1 ED Sheet 2	: 🖸 Sheel	3 🖸 She		TT SF	eet 5						
								-			
DEPEND 20	009, Athens	s/Glyfada, (Greeo	e, Jur	ne 18,2	2009				79	

Potential use

- Research team level
 - Perform the analysis of data in an efficient way
 - Efficient dissemination of the results of the team
- Project level
 - Sharing and cross-exploitation of results from different project teams
- World wide
 - Common repository to store and share data
 - Many teams are performing dependability evaluation but there are no results available at the web

DEPEND 2009, Athens/Glyfada, Greece, June 18,2009

Data analysis approach

- Repository to analyze, compare, and share results
- Use a business intelligence approach:
 - Data warehouse to store data
 - On-Line Analytical Processing (OLAP) to analyze data
 - Data mining algorithms to identify (unknown) phenomena in the data
- Information retrieval to access data in textual formats
- Adopt the same life cycle of BI data
- Use technology already available for DW, DM & IR

DEPEND 2009, Athens/Glyfada, Greece, June 18,2009 84

ambei

83

amber

Steps

- 1. User registration
- 2. Multidimensional analysis
- 3. Definition of the loading plans
- 7. Load the data
- 8. Definition of data ownership policies

DEPEND 2009, Athens/Glyfada, Greece, June 18,2009

- 9. Analysis of the data
- Analyze DBench-OLTP results using OLAF

amber

User registration

- · ADR users must undergo a registration procedure
- · Provide identification information that is verified by the ADR support team To filter malicious users
- Contact information is used to get in touch with the potential repository user
- To access the repository users must authenticate

DEPEND 2009, Athens/Glyfada, Greece, June 18,2009 86

amber **Multidimensional analysis** • Design an adequate multidimensional data model • User has the required expertise to design the data model 😊 - Send to the ADR support team the SQL scripts needed to create the database tables • The ADR team helps the user defining the model Benchma The user only needs to explain us the experimental setup and the format of the data collected

Format of the raw data

amber

80

• Raw data collected by DBench-OLTP is composed of tens of CSV files (one from each run)

DEPEND 2009, Athens/Glyfada, Greece, June 18,2009

- Each row contains data from an injection slot - Identification, duration, number of transactions executed, data integrity errors discovered, type of fault injected, moment of fault injection, workload used, etc)
- A text file describes the experiment and the characteristics of the SUB

DEPEND 2009, Athens/Glyfada, Greece, June 18,2009

Data model (1)

ambei

amber

- Key steps:
 - Identification of the facts that characterize the problem under analysis
 - Identification of the dimensions that may influence the facts
 - Definition of the granularity of the data stored in the star schema

DEPEND 2009, Athens/Glvfada, Greece, June 18.2009 ٥n

Definition of the loading plans

Data extraction

 SQL scripts to extract data from the CSV files to a temporary database schema (data staging area)

amber

92

amber

ambei

• Data transformation

- SQL scripts transform the data into an adequate format

Data load

- SQL scripts to load the transformed data into the data warehouse

• Loading plans documented and stored in the ADR

DEPEND 2009, Athens/Glyfada, Greece, June 18,2009

Load the data

amber

- Executing the loading plans created before
- If new data becomes available we just need to rerun the plans
 - e.g., if the benchmark is executed in other systems
- The documentation of the DBench-OLTP includes papers and technical reports
 - This is considered as part of the DBench-OLTP data
 - It is loaded to the repository and made available to the potential readers of the data

DEPEND 2009, Athens/Glyfada, Greece, June 18,2009 93

Data ownership policy

- Data ownership policies of ADR are divided in two main groups
 - Private data
 - Proprietary data
 - Collaborative data
- For the DBench-OLTP data we have decided to use a collaborative approach
 - Allows other potential users of the benchmark to compare their results with the ones available in the ADR

DEPEND 2009, Athens/Glyfada, Greece, June 18,2009

Analysis of the data

amber

05

- On-line Analytical Processing (OLAP) tools
 - Support the analysis in a very flexible way
 - Provide high query performance and easy, intuitive data navigation
- Oracle Business Intelligence Discoverer Plus (ODP)
 - Commercial tool included in Oracle Business Intelligence package
 Widely used by industry Used freely for recearch purpose
 - Widely used by industry Used freely for research purposes under an Oracle Academy Agreement

DEPEND 2009, Athens/Glyfada, Greece, June 18,2009

OLAP Wizard

- Selection of query type (crosstab or table) and characteristics (title, graph, text area, etc)
- · Selection of measures and dimensional attributes
- Setting the query layout
- · Selection of the fields to be used to sort the results
- Creation of parameters used to filter data

DEPEND 2009, Athens/Glyfada, Greece, June 18,2009 96

Some results								amber		
		Oracle	PosgreSQI	<u>.</u>	,		Integ	rity Errors		
Tpmc with	Tpmc with Faults		644		Orac	le	0			
€tpmc		20		7	Microsoft			0		
Server Un	availability	212	46	0	RedHat			0		
Clients Un	availability	13341	2324	0	Posg	reSQL		0		
					RedHat			0		
	Server Unavailability Clients Unavailability									
	Microsoft	RedHat	Microsoft	Red	RedHat					
Oracle	194	264	11473		19077					
PosgreSQL		460)		23240					
						T	omc W	ith Faults		
						Mic	rosoft	RedHat		
		DEPEND	2009, Athens/Glyfa	Ora da, Gree		8,2009	1271 ⁹⁷	1240		

amber

