

IETR A m	ore general vie	ew of CR
sensors	"OSL ayers"	Concepts found in the literature
User Profile (price, subscription, personal choices (ecological radio)) Sound, image,position, speed safety	Application and	"Context-Aware"
Inter-networks and intra-networks vertical handover, standards	Layer Adaptation &	Interoperability Surrounding Networks
Access, power, modulation and coding types frequency, handover channel estimation antennas,consumption	Optimization	>> Link adaptation
	lleware" and abstraction	-

Detectors	Layers
Jser Profile (price, operator, personal choices, sound,	Application and man-machine
mage, position, speed, safety,	Interface
/ertical inter and intra network "Handover" and	Transport,
tandards, link burden, standards recognition	Network
ype of access, modulation, channel coding, carrying requency, symbol, channel estimation, antennas obes, available material resources,	Network Physical

Road map	Spectrum map						
Car driver	Bubble manager	C (
Vehicle	Terminal	 Spectrum map Rules examples for spectral map construction The spectrum map is evolving with the moving of the terminal 					
Road type	Standard type						
Road width	Standard Throughput						
Road name	Operator						
One way road	Diffusion						
Vehicle speed	Terminal bit rate						
Branch off (change road type)	Vehicle "handover"						
Branch off on the same road type	Change operator for the same standard						
Forbidden road	Forbidden bandwidth						
Police	Regulation body						
Private way	Reserved Bandwidth	in the spatial map					
Speed limit	Limited granted rate						
Give a way to any traffic coming from the right	standard Priority access						
Traffic jam	Overburdened radio link						

IETR Outline		Supélec
 SUPELEC / SCEE presentation Spectrum management Current situation Spectrum sharing Wireless capacity Introduction to Cognitive Radio General remarks A more general & View > 		
 The « Sensorial Cognitive Radio Bubble » The Challenges Cognitive Radio Challenges The sensors The cycle management Challenges related to Software Radio technology ADC Non-linearities Execution platform 		
•Conclusion Jacques PALICOT	AICT 2009 -Tutorial 24 May 09	52

İETI										-	
				Standar	rd		nnel bandwidth	_	Filter	Identificati	
				W-CDMA TD-SCDMA		5 MHz 1.6 MHz			raised cosine $a = 0.22$ raised cosine $a = 0.22$		
						1.23 MHz (US and Korea)					
				TIA/EIA-95A/B		1.25 MHz (other countries)		Chebychev low pass (FIR)			
				cdma2000 (1xRTT	5		US and Korea)	Cheb	wchev low pass (FIR)		
					·		other countries) US and Korea)	_			
				1xEV-DO			other countries)	Cheb	ychev low pass (FIR)	•	
				(US and Korea) Ch		ebychev low pass (FIR)					
		1.25 MHz (other countries)									
0.11		Standar	1	Channel bandwidth 5 MHz		Filter Root raised cosine (a = 0.22)		Identificat			
Standards		TETRA				Root raised cosine ($\alpha = 0.22$) Root raised cosine ($\alpha = 0.35$)		-			
					5 MHz			HPSK : RRC filter (q=0.22)			
						1.6 MHz			$16QAM : RRC filter (\alpha = 0.22)$		
		TD-SCDMA				Root raised cosine filter (a= 0.22) RRC filtered (rolloff = 0.22),					
				HSDPA		1.6 MHz		(QPSK	and 16QAM)	1.1	
Standard	Channel bandwidth	Channel Filter	Identification	cdmaOne (TIA/EIA-95A/B/C)		cdmaOne (TIA/EIA 05A/P/C) 1.23 MHz (U.S. cellular band)			Chebychev low pass (FIR) OQPSK, 1 bit/symbol (RL) QPSK, 1 bit/symbol		
DCS 1800/DCS 1900	200 kHz	Gaussien 0.3	Yes			1.25 MHz (ot	fHz (other bands)				
PDC	25 kHz	REC (Nyquist) 0,5	Yes	cdma2000® (1xRTT)					hev low pass (FIR) QPSK/HPSK, mbol (RL) QPSK, 2 bits/symbol	-	
CT2	100 kHz	Gaussien 0.5	Yes			1.25 MHz (other bands)		(FL)	moor (RL) QPSR, 2 ons/symbol		
GSM	200 kHz	Gaussien 0.3	Yes	1xEV-DO		1.23 MHz (U.S. cellular band)			bychev low pass (FIR) QPSK/HPSK,		
EDGE	200 kHz	Linearized Gauss	Yes			1.25 MHz (other bands)		8PSK, 3 bits/symbol (RL) QPSK, 8PSK,16QAM (FL)			
GPRS	200 kHz	Gaussien 0.3	Yes	TETRA/TEDS (TETRA release 2) 25 kHz			RC filter (η= 0.35) TETRA: π/4 DQPSK (differential QPSK) TEDS: 8DQPSK, 16QAM, 640AM, DPSK				
PHS	300 kHz	Nyquist 0.5	Yes								
RLAN Bluetooth	1 MHz	Gaussien 0.5	Yes								
IS95	1.25 MHz	FIR	Yes	APCO 25	PCO 25 12.5 kHz and 6.25 kHz		CQPSK	, C4FM with RRC filter	-		
Globalstar	1.25 MHz	RIF 48 coeff	Yes	IEEE 802.15.1	Bluetooth		1 MHz		Gaussien 0.5	confusio	
DAB	1.712 MHz	Gat (Window)	Yes	IEEE 802.15.3a	(TWP 2	1-10.6 GHz)	WiMedia: 528 MH	Z G	Filter depends on format: Shaped pulse or frequency		
DECT	1.728 MHz	Gaussien 0.5	Yes			1-10.0 GHZ)	(528 MHz or great	s (lef)	witched OFDM		
UMTS	5 MHz	Nyquist 0.2	Yes	IEEE 802.15.4 (Zigbee)				9	000 MHz: BPSK with RRC filter 2.4 GHz: OQPSK with half sine	ST C	
DVB-T	7-8 MHz	Gat (Window)	Yes			2.4 GHz: 5 MHz			vave impulse response		
DVB-S		REC (Nyquist) 0.3	Yes	IEEE802.16a		(WiMax, fixe) 1.25 - 20 M		2	•	-	
RLAN	10 MHz	Nyquist	Yes	IEEE802.16d (WiMax,		fixe) 20 MHz			square-root raised cosine (α=0.25)	-	
Hiperlan I	20 MHz	Gaussien 0.5	Yes	IEEE802.16e	(WiMax_Mo	Mobile, IEEE			square-root raised		
LMDS	36 MHz	Nyquist 0.2	Yes		802.16-2004				cosine (α =0.25)		
Hiperlan II	50 MHz	Gat (Window)	Yes	HomeRF			1 MHz, 3.5 M	+z	Gaussien 0.5	-	

Intermediary layer sensors								
3 rd STEP: Fusion								
 In order to increase the good recognition rate by means of: Use of simple logical rules Use of Neuronal Networks An example: A simple logical rule applied to both following sensors 								
Guard interval								
Channel bandwidth								
⇒ Increases DAB / DECT distinction								
Standa	ard Without GI	With GI						
DEC	T 47 %	96 %						
DAB	50 %	89 %						
Jacques PALICOT		AICT 2009 - Tutorial 24 May 09 78						

				COMPARAISON	1			
Methods	Need of an External service Provider	Content level (1)	Coverage dependant(2)	Computational complexity	Standardization process	Spectrum consuming	Operator dependent	Need of an additional link
СРС	Yes	High	yes	low	Yes	yes	Yes	Yes (CPC itself)
LBI	Yes	Medium	no	medium	No	yes	Yes	Yes (GPS)
BSRS	No	low	no	high	No	No	No	No
lition inf stence o :this met	tric means that the formation about t f Standards (to re tric means that the ives precise infor-	he standard each more i e informati	l, the operator nformation in on given by th	s, the services,. ply to demodul	Whereas BSF ate the standard pendant of the c	RS will only l) coverage. In	give an inf	ormation of

Spectrum Hole detection Supélec					
Covariance matrix eigenvalues detector					
The value of cooperation: random matrix approach					
Consider the $K \times N$ matrix consisting of the samples received by all the K secondary base stations ($y_i(k)$ is the sample received by base station i at instant k):					
$\mathbf{Y} = \begin{bmatrix} y_1(1) & y_1(2) & \cdots & y_1(N) \\ y_2(1) & y_2(2) & \cdots & y_2(N) \\ y_3(1) & y_3(2) & \cdots & y_3(N) \\ \vdots & \vdots & & \vdots \\ y_K(1) & y_K(2) & \cdots & y_K(N) \end{bmatrix}.$					
The goal of the random matrix theory approach is to predict the behavior of the $\frac{1}{N}\mathbf{Y}\mathbf{Y}^H$ If $N \to \infty$, $\frac{1}{N}\mathbf{Y}\mathbf{Y}^H \to \mathbf{I}$ (test of independence!)					
Jacques PALICOT AICT 2009 - Tutorial 24 May 09 106					

IETR Outline		Supélec
 SUPELEC / SCEE presentation Spectrum management Current situation Spectrum sharing Wireless capacity Introduction to Cognitive Radio General remarks A more general « View » 		
 The « Sensorial Cognitive Radio Bubble » The Challenges Cognitive Radio Challenges The sensors The cycle management Challenges related to Software Radio technology ADC Non-linearities Execution platform 		
Conclusion Jacques PALICOT	AICT 2009 -Tutorial 24 May 09	112

IP	Bitstream Size	Reconfiguration Time
Fully Reconf. FIR	74.7 kB	1.5 ms
PR FIR	25.7 kB	$510 \ \mu s$
PR Conv. coder	2 kB	$40 \ \mu s$
S	ome results with 1	PR

