Researching Research
Are we going the right way?

Mischa Dohler
CTTC, Barcelona, Spain

UBICOMM 2008, Valencia, Spain
30 September 2008

Nature’s Magic – Northern Lights

The Ideas Pyramid

Research Development Market

Ideas

Personnel

Time-to-Market

Research Development Market

Visibility

Technology
trigger Peak of inflated
expectations Trough of
disillusionment Steep of

ealightenment Plateau of
productivity

Years to mainstream adoption

- Less than 2 years
- 2 to 5 years
- 5 to 10 years
- More than 16 years

Time
R versus D versus M

- **Research:**
 - “… is the process of going up alleys to see if they are blind
 - infinite number of problems but only finite resources
 - challenges is to say no

- **Development:**
 - “… is too boring for research and never sufficiently fast for marketing
 - Murphy’s law loves development as the devil lies in the detail
 - challenge is to deliver

- **Market:**
 - “… is to make people buy things they don’t actually need
 - marketing has much more in common with research than with development
 - challenge is to predict

1

1 Academic Efforts
Problems First, Please! [1/5]

- Problems in Mathematics:
 - Hilbert presented 23 unsolved problems at Mathematician conference in 1900
 - 4 remain unsolved (proof to Riemann’s Hypothesis is currently being examined)
 - Mathematics poses problem first and then tries to find solution

- Solutions in Engineering:
 - Engineering often tries to find a solution to a problem which is not yet known
 - as per David Goodman, we would gain rethinking this typical approach
 - leads to hype as solutions are hoped to fit all problems

- Example issues understood but yet still researched/hyped:
 - ad hoc networks
 - ultra-wideband systems
 - cognitive radios and networks
 - green communications

Problems First, Please! [2/5]

- Ad Hoc Networks:
 - 40 years of research has not yielded any mass market application
 - infinite degrees of freedom, hence infinite research
 - research efforts would be better of elsewhere
Problems First, Please! [3/5]

- Ultra-Wideband Systems:
 - 19 years of research has not yielded any mass market application
 - Interference onto narrowband was thought problem but inverse is true
 - Solutions are neither cheap nor simple (no magic)

Example of Gaussian

Problems First, Please! [4/5]

- Cognitive Radios & Systems:
 - Mitola: best solution in dependency of every possible observable parameter
 - Community: CR = sensing + AI + SDR
 - Suggestion: CR = radio which is working in conditions it was not designed for
 - Actually: OR = sensing + (simple) decision + SDR

- Restraints for cognitive radios and networks:
 - Intelligence requires some form of learning over time; however, channel and other conditions decorrelate very quickly
 - In my opinion, cognitive networks should exhibit some form of emergent behaviour; however, in a primary/secondary user scenario this is very unlikely
 - How do you standardize intelligence?

- Enabler for opportunistic radios and networks:
 - Wireless systems have inherently a short memory, thereby encouraging usage of resources when there is an opportunity
Problems First, Please! [5/5]

- Green Communications:
 - ICT sector is responsible for about 2% of greenhouse gases
 - Telecom sector probably accounts for a small percentage of these 2%
 - Blackle instead of Google likely saves more energy than entirety of all BSs

- Reshaping focus:
 - Mobilizing ICT sector to save energy is a great idea
 - However, it would be better off being a facilitator
 - E.g., help decreasing consumption of transportation, even if ICT increases

Research Funding [1/5]

- General consensus:
 - Funding opportunities are decreasing
 - Funding money is never enough
 - Application is time consuming

- Example funding bodies:
 - EPSRC (UK): €1 Billion a year
 - NSF (USA): €4 Billion a year
 - EC (Europe): €8 Billion a year

- General problems:
 - How much funding to give
 - To which scientific areas and
 - How to split among research teams
Research Funding [2/5]

- Example of “ad hoc networks”:
 - 100,000 Google Scholar hits
 - assume 2 man-month research for each
 - assume €5k per man-month
 - €1 Billion went into ad hoc

- We are not the only ones with this problem:

Research Funding [3/5]

- Today’s projects and proposals hence focus on:
 - cross-layer approaches
 - inter-disciplinary approaches

- Cross-Layer:
 - layered approach has been labelled as “not good enough” lately
 - however, layers and functionalities have not disappeared as of today
 - cross-layer design mainly depends on sensing capabilities of device

- Inter-Disciplinary:
 - borrowing concepts from info theory, physics, biology, etc. seems promising
 - linguistic barrier is the main challenge
Research Funding [4/5]

- Do you speak Information Theory?

\[
P(Q_{ij}(0)/P_{j}^{(i)}(0) \cap F_{j}(i-1))
\]
\[
\subseteq P(Q_{ij}(0)/P_{j}^{(i)}(0) \cap F_{j}(i-1) \cap P_{j}(i))
\]
\[
\subseteq P\left(\left\{ x \in \mathcal{X} \cap P_{j}^{(i)}(0) \mid x \in \cap_{S_{j}(i) \cap F_{j}(i-1) \cap P_{j}(i)}\right\} \cap F_{j}(i-1) \cap P_{j}(i)\right)
\]
\[
= P\left(\bigcup_{x \in \mathcal{X} \cap P_{j}^{(i)}(0)} \left\{ x \in \mathcal{X} \cap P_{j}^{(i)}(0) \cap \bigcap_{S_{j}(i) \cap F_{j}(i-1) \cap P_{j}(i)}\right\} \cap F_{j}(i-1) \cap P_{j}(i)\right)
\]
\[
\cap \left(\left\{ x \in \mathcal{X} \cap P_{j}^{(i)}(0) \cap \bigcap_{S_{j}(i) \cap F_{j}(i-1) \cap P_{j}(i)}\right\} \cap F_{j}(i-1) \cap P_{j}(i)\right)\right)
\]
\[
\subseteq P\left(\bigcup_{x \in \mathcal{X} \cap P_{j}^{(i)}(0)} \left\{ x \in \mathcal{X} \cap P_{j}^{(i)}(0) \cap \bigcap_{S_{j}(i) \cap F_{j}(i-1) \cap P_{j}(i)}\right\} \cap F_{j}(i-1) \cap P_{j}(i)\right)
\]
\[
\cap \left(\left\{ x \in \mathcal{X} \cap P_{j}^{(i)}(0) \cap \bigcap_{S_{j}(i) \cap F_{j}(i-1) \cap P_{j}(i)}\right\} \cap F_{j}(i-1) \cap P_{j}(i)\right)\right)
\]
\[
\leq \sum_{x \in \mathcal{X} \cap P_{j}^{(i)}(0)} P\left(\left\{ x \in \mathcal{X} \cap P_{j}^{(i)}(0) \cap \bigcap_{S_{j}(i) \cap F_{j}(i-1) \cap P_{j}(i)}\right\} \cap F_{j}(i-1) \cap P_{j}(i)\right)
\]

Research Funding [5/5]

- Personal wish-list:
 - funding application process ought to be eased
 - output quality in terms of journals, spin-offs, etc ought to increase
 - encouragement to go beyond being a training program

- Suggestion to funding bodies:
 - give e.g. 80% funding in round-robin to institutions with strong track-record
 - other institutions bid as usual for the remaining budget

- Another suggestion to funding bodies:
 - fund the same project by two competing teams
 - encourages healthy scientific competition
 - encourages quality over quantity
Open Research Issues

- **Embedded Systems:**
 - truly understand embedded systems (bounds, performance, limits)
 - synthesize optimum protocols and design guidelines
 - facilitator for "Internet of Things", "Haptic Computing", "Things That Think", etc.

- **Ubiquitous Communications:**
 - make ubiquitous communications reality
 - wireless Internet >> wireless + Internet
 - facilitator for "Ambient Intelligence", "Everyware", etc.

2

Industrial Efforts
Product Development

- There are 4 main approaches to product development:
 - norms & standards
 - forums & associations
 - proprietary solutions
 - open source

- These approaches trade:
 - time-to-market
 - development costs
 - obedience to regulations
 - intellectual property, etc.

- They are all subject to heavy lobbying!

Standards – Benefits

- Service Providers benefit:
 - they can design, develop and operate a wide range of services
 - whatever the underlying but standard-compliant, heterogeneous technologies

- Vendors benefit:
 - they can access markets more easily with standard-compliant products
 - at the risk of blurring competitive differentiation

- Customers benefit:
 - they can access a wide range of services
 - without the burden of being tied to a given service provider or technology

- Regulators benefit:
 - regulation of complex technology space
 - facilitates control and billing (e.g. UMTS spectrum license)
Standards – Corporate View

- Standardization as a profitable business:
 - defend business stakes
 - promote patents through the enforcement of a consistent IPR policy

- Speed up the introduction of new products and/or services:
 - facilitated by a set of available standards

- Slow down the standardization process:
 - to extend the lifetime of an already-introduced yet proprietary product or service

- Encountered problems with standards:
 - different IPRs often lead to stalemates in standardization groups
 - Why not bring ready solutions to standards? (Rob Calderbank, Princeton, USA)

Success & Failure Stories

- Europe:
 - success: GSM
 - integrated operators
 - failure: HiperLAN2

- North Americas:
 - success: WLAN
 - promotion of CDMA
 - improvable: IS95

- Asia:
 - success: subscriber growth
 - manufacturing power
 - significant impact on B3G
 - improvable: despite potential, not a driver yet
Yesterday – Today – Tomorrow

- 10 years ago:
 - wireless world was dominated by manufacturers and operators
 - in the news: Nokia, Siemens, France Telecom, Vodafone, etc.

- Today:
 - software giants take liking in extending the Internet to the wireless world
 - in the news: Google, Microsoft, etc.

- 10-20 years from now:
 - if ubiquitous will truly have taken off, then the user will be at the centre
 - in the news: Smith, Allen, Spain, etc.

Concluding Remarks
Music of Chance

- **Academic Efforts:**
 - can be planned, which means limiting the alleys to be taken
 - however, cannot be predicted nor its success guaranteed
 - challenge is to focus on important issues in research
 - *Imagination is more important than knowledge.*

- **Industrial Efforts:**
 - can be planned but, again, success is no guarantee
 - success is more likely if you “live” from given technology
 - challenge is to be on time, i.e. not too early and not too late
 - *The economy depends about as much on economists as the weather does on weather forecasters.*

- *The trouble with our times is that the future is not what it used to be.*

The Road Ahead

© http://www.mistymountaingraphics.com/images/gallery6/TheRoadAhead.jpg
Quick Intro

- **Wireless Sensor Network:**
 - facilitated by RF chain, antennas and EM propagation
 - saves a lot of cabling costs
 - research keywords: channel, PHY, MAC, etc

- **Wireless Sensor Network:**
 - sensing of physical information from environment, etc
 - T; light, humidity, wind, rain; radioactivity; pH; chemicals, pressure, etc.
 - research keywords: distributed sampling, coverage, security, localization, etc

- **Wireless Sensor Network:**
 - provision of sensed data to sink via network
 - data flow often exhibits converge-cast behavior
 - research keywords: auto-*, routing protocols, etc.
Wireless Sensor Node

- Each WSN node consists of these basic elements:
 - sensor
 - energy supply
 - microcontroller
 - memory
 - RF

- WSN nodes should be:
 - low – cost
 - low – complexity
 - low – size
 - low – energy

Battery & Data Flow

- Typical WSN node types:
 - non-rechargeable battery
 - rechargeable battery with regular recharging (e.g. sunlight)
 - rechargeable battery with irregular recharging (e.g. energy scavenging)
 - capacitive/inductive energy provision (e.g. active RFID)
 - always on (e.g. powered electricity meter)

- Typical data flows through the network:
 - sensed information from the nodes towards one or a subset of the AP(s)
 - query requests from the AP(s) towards the sensing nodes
 - sometimes reverse flows are needed (e.g. for ACK)
 - (control information from the AP(s) towards the actuators)
Wireless Sensor Network

- Typical network phases:
 - **start-up**: (self-)organization, configuration etc;
 - **life-time**: maintenance, (self-)healing;
 - **adaptation**: node failure, mobility, etc;
 - **death**: breakdown in connectivity, etc.

Approach of ‘R’ Folks

- Prime assumption of research community:
 - above topologies with huge amount of nodes (thousands to millions)
 - emphasis on wireless sensor in-networking (nodes to sink)
 - key words: energy-efficiency, scalability
Approach of ‘D’ Folks

- Prime assumption of development community:
 - huge amount of nodes is myth and market is marginal
 - instead, emphasis on wireless sensor out-networking (network to Internet)
 - key words: IPv6, security, data-load on Internet

R&D However Also Agree
IETF ROLL – Overview

- Routing Over Low-Power and Lossy Networks (ROLL):
 - IETF information discussion started 1 year ago
 - today very active working group
 - website: http://tools.ietf.org/wg/roll
 - mailing list: http://www.ietf.org/mail-archive/web/roll/current/threads.html

- Since WSNs are application specific, 4 scenarios are dealt with:
 - home applications: draft-brandt-roll-home-routing-reqs
 - industrial applications: draft-pister-roll-indus-routing-reqs
 - urban applications: draft-dohler-roll-urban-routing-reqs
 - vehicular applications: draft-wakikawa-roll-invehicle-reqs

- requirement overview: draft-levvis-roll-overview-protocols
- protocol survey: draft-levis-roll-protocols-survey

IETF ROLL – If We Did Nothing?

- Lack of end to end consistency in terms of routing, QoS, management, security:
IETF ROLL – We Need To Act

- IP end-to-end:

IETF ROLL – BoF Scoping

- IETF has not actively been working on such networks until recently:
 - 6lowpan WG: RFC4944 (IPv6 over IEEE 802.15.4)
 - Still no routing solution for such networks within IETF!

- IETF 6LoWPAN Internet Area WG:
 - produced IPv6 header compression RFC over IEEE 802.15.4 making IP practical for this class of networks
 - consensus with 6lowpan that an IP routing solution is needed

- Pragmatic, working implementations have been developed:
 - industrial routing solutions over lossy links at low power available today
 - each defines its format, network, transport, gateway, etc

- IETF routing solutions for ROLL are hence needed.
IETF ROLL – Urban WSNs

Sensors in the containers indicate filling level → application optimize journey to empty containers

Results*
- Productivity (25%)
 - No more useless travel
 - Less resources needed (trucks)
- Staff less in contact with waste

* Source Voiron Expé

IETF ROLL – Goals & Milestones

Followed Timeline:
- April 2008: Submit Use case/Routing requirements for Industrial, Connected Home, Building and Urban networks applications to the IESG to be considered as an Informational RFC.
- August 2008: Submit Routing Metrics and Attributes for ROLLs document to the IESG to be considered as an Informational RFC.
- November 2008: Submit Protocol Survey to the IESG to be considered as an Informational RFC.
- January 2009: Submit Security Framework for ROLLS to the IESG to be considered as an Informational RFC.
- February 2009: Submit the Routing for ROLLs Architecture document (summary of requirements, metrics and attributes, path selection model) to the IESG as an Informational RFC.
- March 2009: Recharter.