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Tutorial on Computational Systems Biology

• Goal
give a crash course on 
molecular biology
give an account of several 
mathematical modeling 
techniques for sysbio: 

– differential equations, 
– stochastic processes (and 

Gillespie’s algorithm), 
– petri nets, 
– process algebra

give a tutorial on a computer-
based modeling environment: 
COPASI (Complex Pathway 
Simulator)
give a quick view on a sysbio 
project: the heat shock 
response

• Program
14.30-15.15: A crash course 
on molecular biology
15.15-15.45: Modeling with 
differential equations
15.45-15.55 Break
15.55-17.00 Modeling with 
stochastic processes. Gillespie’s 
stochastic simulation algorithm
17.00-17.30 The heat shock 
response
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About Turku

• Turku
Former capital of Finland
Some 170000 people (5th

largest in Finland, very close 
to 2nd)
Most beautiful archipelago in 
the world
Medieval castle
Cathedral 
Fibonacci numbers 
One of the best developed 
biotech sectors in Finland
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Academic life in Turku

• Academic life in Turku
Three universities
We are with Åbo Akademi University, 
Department of IT
Turku Centre for Computer Science 
(TUCS): the graduate school in 
computer science, coordinating the 
PhD education in CS in all three 
universities
Located in the new ICT building, part 
of the Turku Technology Centre
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My own research group

• The Computational Biomodeling Laboratory at Turku Centre 
for Computer Science and Åbo Akademi University

http://combio.abo.fi/

• Part of the Systems Biology national program of Academy of 
Finland

• Part of the Systems Biology research program of Turku 
Centre for Biotechnology

• We are a group of mathematicians and computer scientists
• Our projects are interdisciplinary, run in cooperation with 

biologists and biochemists from Finland and abroad
• Some recent projects

Gene assembly in ciliates
The hest shock response
The self-assembly of intermediary filaments
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Life inside a cell

• Simplifications often made by 
biomodelers

Cell is “like a bag of chemicals 
floating in water”
Metabolites flow around chaotically
Metabolites are uniformly 
distributed
Proteins are just like balls (or 
cubes), DNA is just like a rope
In a DNA sequence, A is always 
matched with T, C always with G
Processes are isolated from each 
other and from the environment
…

• The reality is surprisingly 
complex

The cell has a skeleton, gives it
flexibility
Many intracellular boundaries, many 
specialized organelles
Highly specific metabolites
Very precise recognition of one’s 
target
Energy efficiency optimized
Exquisite regulation, 
synchronization, signal propagation, 
cooperation
Some particles do move chaotically, 
but some others are transported
Some aspects are discrete (on/off), 
some others are continuous-like 
(always on, variable speed)
Huge pressure, crowded

A view on “The Inner Life of a Cell” (Harvard University, 2006): 
http://aimediaserver.com/studiodaily/videoplayer/?src=harvard/harvard.swf&width=
640&height=520
Beautiful representation of metabolite transportation, protein-protein binding, DNA 
replication, DNA ligase, microtubule formation/dissipation, protein synthesis, …
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A crash course on Molecular Biology

• Cellular principles
Eukaryotes and prokaryotes; 
viruses and plasmids
Cellular tissues and colonies
Life cycle
Pathways 
Energy
Individual interactions
Amplifications
Locality

• Biological macromolecules
DNA
Genes
Proteins
Enzymes
Chaperons

• Some of the slides are from 
Prof. Jyrki Heino
(University of Turku)
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Simpler things: viruses

• Viruses are essentially just 
a protein coat hosting 
some DNA

In particular they do not have 
the machinery to replicate 
themselves
Well-studied example: 
lambda-phage
The protein coat attaches to 
the membrane of a cell and 
inserts the viral DNA into the 
cell
Once in, the viral DNA loops 
on itself forming a circular 
molecule
The cell’s own transcription 
machinery will transcribe the 
viral DNA as if it were its own

In the case of the lambda-
phage, the result is a protein 
called lambda integrase that 
inserts the viral DNA in the 
host’s chromosomal DNA
The cell and all its descendants 
are from now on carriers of the 
viral DNA
Some external event may 
trigger the virus to become 
active: excise its DNA from the 
host’s chromosome, multiply 
itself, create protein coats, 
assemble many copies of the 
virus, destroy the cell’s 
membrane and release the 
new lambda phage to the 
intercellular environment
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Plasmids

• There is nothing special about the viral DNA that makes 
the cell transcribe it as if it were its own

The same machinery will recognize any plasmid (circular DNA) 
and transcribe it as well
The basis for bioengineering (synthetic biology): encode into DNA 
the “instructions” and have the cell execute the code
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The extracellular environment
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Cells cooperate

• At the molecular level, the cells in multicellular
organisms are similar to unicellular organisms

Multicellular organisms have however specialized cells: they 
express a specific set of genes and perform only certain activities

– Question: How can cells express only certain genes in the presence of 
exactly the same set of genes?

The inter-cellular communication is very important
– Cells exchange signals (e.g., in the form of proteins), that are

received by receptor sites on the plasma membrane
– Signals may then be amplified and activate certain pathways
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The intracellular environment

• The eukaryotic cell is a very crowded environment
• High pressure
• Many organelles, relatively little empty space (water)
• The cytoskeleton gives the cell 

its shape 
a degree of flexibility
ability to move
a “railway network” for protein transportation
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Biological macromolecules

• Cells and organelles are formed by biological 
macromolecules

DNA is a (passive) storage of information
RNA are intermediates towards proteins, also role in regulation
Proteins are almost everything: building blocks, motors, 
regulators, enzymes, etc.
Lipids contribute to forming the membranes
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Macromolecules

• DNA
Nucleotide: consists of a deoxiribose sugar 
(5 atoms of carbon), a phosphate group 
and one of the four possible bases: 
adenine, cytosine, guanine, thymine
Phosphate attached to carbon 5, carbon 3 
free for attachment
Single strands: sequences of nucleotides
Watson-Crick complementarity: A-T, C-G
Double strands: two single strands with 
complementary nucleotides bind together 
forming a double helix
Contains the blue print of the organism, 
each cell has a complete copy
Humans: some 3 billion base pairs in every 
single cell
DNA transcribed to RNA
RNA translated to proteins
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Biological macromolecules

• Genes
DNA has coding blocks (genes) and non-coding blocks
Humans: some 20 000 – 30 000 genes (in every cell!)
Genes are transcribed into RNA that is then translated into 
proteins 
RNA: similar structure as DNA, T replaced with U, mostly single 
stranded
Not all genes transcribed in all cells
Controllers: some non-coding blocks upstream of the gene –
promoter regions
The RNA polymerase enzyme cannot bind to DNA on itself –
helped by other enzymes that bind to the promoter region
Promoter region may be inhibited by other regions
A robust computer science-like system: “if-then-else”
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Biological macromolecules

• Proteins
Sequences of amino-acids (20 
possible)
Translated from RNA based on 
a universal code
3 nucleotides (codon) code for 
one amino acid, some amino 
acids correspond to several 
codons

– Only one start codon, 3 stop 
codons

Form a 3D fold – determines 
the function of the protein
The fold is determined by the 
sequence and the outside 
conditions
“Holy grail” of Bioinformatics: 
the protein folding problem –
predict the 3D fold based on 
the (linear) amino acid 
sequence
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Proteins

• Involved in molecular recognition
Recognize and bind to specific molecules (DNA, RNA, proteins). 
In the case of DNA they may recognize a specific sequence of 
nucleotides, or even a specific pattern

• Their function depends on the 3D structure
May be turned active and inactive
Protein conformation may change after binding to other 
molecules

• Molecular motors
Protein may act as molecular motors through repeated changes 
in their 3D structure
Used for particle transportation or for cell locomotion

• Self-assembly
By binding to another protein, some new binding sites may be 
unveiled, for other proteins to bind, etc.
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Biological macromolecules

• Enzymes
Special type of proteins, specialize in recognizing very specific 
blocks of DNA (or protein) and binding to it

– Some of them may then cut the DNA in a precise way, others may 
copy or repair DNA, etc.

Others may catalyze biochemical reactions, thus enabling 
reactions that would otherwise would be too slow

– The speed-up may be of 3 orders of magnitude

They may be regulated by other enzymes, e.g., switched 
active/inactive
Crucial also in biotechnology
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Biological macromolecules

• Chaperons
Proteins assisting other proteins in achieving proper folding. 
Many chaperones are heat shock proteins: proteins expressed in 
response to elevated temperatures. 

– Protein folding is severely affected by heat, and therefore chaperones 
act to counteract the potential damage. 

Chaperones recognize unfolded proteins by the hydrophobic
residues they expose to the solvent. 
Incompletely folded proteins or misfolded proteins with exposed 
hydrophobic groups have a tendency to aggregate. 

– This aggregation is extremely detrimental to the cell: see Alzheimer’s 
and Creutzfeld-Jacob’s (human version of mad cow disease)

– Chaperones help to prevent this by providing encapsulated 
hydrophobic environments that allow the protein to properly fold.
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Protein phosphorylation
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Apoptosis

• Apoptosis is the programmed cell death
Cells may also die a “violent” death, essentially exploding and 
hurting other neighboring cells
Through apoptosis cells commit to an “organized” death in which 
they step by step shut down their processes and eventually 
dissolve their membrane, releasing their intracellular content for 
other cells to reuse
Apoptosis may be triggered as a consequence of a series of 
events the cell may trigger its own (organized) death if 
conditions are deemed that survival is impossible or at least 
detrimental for the whole organism
Apoptosis may also be triggered by signals from the extra-
cellular environment 
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Signaling pathways
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Amplification

• Sometimes an initial weak signal needs to be amplified
• The usual amplifying structure:

Initial (weak) signal activates a receptor protein
That receptor protein activates another protein
The receptor remains active and may activate many other 
proteins (as many as thousands per second)
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Biological interactions are local

• Most effects of biological interactions are local
Unlike in computer science, viz. global variables, etc.

• Diffusion plays a role in spreading the effects of some 
local interactions

Some metabolites move chaotically, others are transported 
around the cell

• Membranes offer a physical implementation of locality
Their purpose is to give physical boundaries to the metabolites 
inside and to filtrate the inwards and outwards flux
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Cells divide and multiply

• Prokaryotes: DNA is amplified, then attaches to 
different parts of the membrane and the cell divides

• Eukaryotes: more complex process because the DNA is 
organized on chromosomes

Cells must ensure that both daughter cells have the required 
number of chromosomes
In the case of sexual reproduction the process is even more 
complex, including a preliminary stage of exchanging haploid 
cells (only one copy of each chromosome)
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Life inside a cell

A view on “The Inner Life of a Cell” (Harvard University, 2006): 
http://aimediaserver.com/studiodaily/videoplayer/?src=harvard/harvard.swf&width=
640&height=520
Beautiful representation of metabolite transportation, protein-protein binding, DNA 
replication, DNA ligase, microtubule formation/dissipation, protein synthesis, …
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Modeling

What is a model?
• A (partial) view of the reality
• An abstraction of the reality
• A representation of the (supposedly) main features of the reality, 

including the connections among them

• For a given object of study, many models may be given, possibly 
focusing on different features of the object

We focus in this tutorial on mathematical (and 
computational) models

• Many other types of models exist
• “Model” is indeed a very overloaded word
• In this way, we also answer that a model is a mathematical

representation of the reality

What a model is not
• A model is not the reality
• A model is not certain!
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Modeling

Why mathematical modeling?
• It allows for a precise formulation of the chosen aspects of 

the reality
• It allows for a precise formulation of the current 

knowledge of the reality
• It allows for precise reasoning about the reality
• It allows for some types of analysis that would be 

impossible to perform on the reality
– Model checking: verify all possible behaviors of the model in 

time
– Scenario analysis: verify the behavior of the model in some 

well-defined extreme scenarios (e.g., disaster scenarios)

• It allows for predictions
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Modeling

Model validation
• Any model must always be subjected to experimental 

validation against the reality
• A model may be invalidated by experimental data
• No set of experimental data can confirm the “truthfulness”

of a model
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Modeling in science and 
engineering

Great traditions of mathematical modeling in science 
and engineering

• Physics 
• Chemistry
• Engineering
• Computer science

Some mathematical modeling in biology also exists, 
but only expanding in scope in recent years
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Modeling in biology

Biology is in many ways transforming as a 
science

• It has been by excellence an experimental science
– Its “modus operandi”

hypothesis 
experiment 
data 
suggestion for facts/principles/laws

– Supported by many imaging techniques (some low-tech, 
some hi-tech)

• In the last 20 years many technological advances
– DNA microarrays, genome sequencers, mass spectrometry, 

advanced microscopy
– All of these generate numerical data
– Able to track inter-connections among many players, all 

contributing to the cell functions
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Modeling in biology

New modus operandi for biology
• Hypothesis, inter-connections -> model
• Experiment -> quantitative (as well as qualitative) data
• Model fitting 
• Model analysis, predictions
• Experiment -> testing the predictions
• Deducing facts/principles/laws based on the model
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Modeling approaches

Mathematical models
• Continuous vs. discrete mathematics
• Deterministic vs. stochastic mathematics

Computational (computer science) models
• Boolean networks
• Petri nets
• Process calculi
• Membrane systems
• …

Hybrid models
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Mathematical vs. computational 
models

Mathematical modeling
• The de facto standard in 

physics, chemistry, engineering
• Basic paradigm

– Identify the main actors, they 
become the (numerical) 
variables of the model

– Identify the transfer function: it 
relates the numerical quantities 
to each other, expressing how 
they are to be updated based on 
the current values

– Transfer functions may be 
composed yielding large, 
complex networks of inter-
related variables

– The end result: a mathematical 
object (equations) that can be 
numerically approximated (or 
solved analytically)

– Quantitative models!
• Several types of modeling 

approaches

Computational modeling
• Widely used in computer science
• Basic paradigm

– Identify the main actors, their 
possible (discrete) configurations 
make up the states of the model

– Write a state machine that 
defines how, given certain 
events, the model changes state

– State machines may be 
composed yielding complex 
reactive systems

– The end result: an algorithm 
that can be executed

– Most often qualitative models!

• Several types of modeling 
approaches
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Mathematical models

Stochastic 
processes

Stochastic 
differential 
equations

Stochastic

Difference 
equations

Differential 
equations

Deterministic

DiscreteContinuousTime

Type
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Modeling with differential equations

Modeling paradigm
• The objects 

– the concentrations of all metabolites of interest 
Do not consider the individual instances of each 
metabolite
Depending on the model, it may also be translated in 
terms of number molecules, by multiplying with the 
volume

– the rates of all reactions

• Main assumptions
– The system is well-stirred
– The system is at thermodynamical equilibrium
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The law of mass action

Waage, Guldberg 1864, Guldberg, Waage 1867, 
1879

• The reaction rate is proportional to the probability of a 
collision of the reactants

• The probability of the collision is proportional to the 
concentration of reactants to the power of the molecularity

Examples
• For a reaction A->, the reaction rate is v(t)=kA(t)
• For a reaction A+B C, the reactions rate is 

v(t)=kA(t)B(t), for some constant k
• For a reaction A+B<->C, the reaction rate is 

v(t)=k+A(t)B(t) – k-C(t), for some constants k+, k-

• For a reaction 2A+3B<->4C+D, the reaction rate is 
v(t)=k+A2(t)B3(t) – k-C4(t)D(t), for some constants k+, k-
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The differential equations

The reaction rate gives the change per unit of time 
of the concentration of every metabolite involved in 
the reaction

• For a consumed metabolite, the change will be –v(t)
• For a produced metabolite, the change will be v(t)

Example
• For a reaction A->, the reaction rate is v(t)=-kA(t)

– dA/dt=-kA(T), solution A(t)=A0e-kt

• For a reaction A+B C, the reactions rate is 
v(t)=kA(t)B(t), for some constant k

– dA/dt=-kA(t)B(t), dB/dt=-kA(t)B(t), dC/dt=kA(t)B(t)
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Coupled reactions

Assume we have a set of reactions
• A+B->C
• A+2C<->B
• C->2A

Write the rates of all reactions
• V1=k1AB
• V2=k2

+AC2-k2
-B

• V3=k3C

Write the differentials: for each metabolite, consider 
all reactions where it participates

• dA/dt=-v1-v2+2v3=-k1AB-k2
+AC2-k2

-B+2k3C
• dB/dt=-v1+v2=-k1AB+k2

+AC2-k2
-B

• dC/dt=v1-2v2-v3=k1AB-2k2
+AC2+2k2

-B-k3C
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Coupled reactions

The resulting system of differential 
equations may also be written in a 
matrix form:

• dX/dt=Sv, 
• where X is the vector of m reactants, 

S is the (m x r)- stoichiometric
matrix and v is the vector of r 
reaction fluxes

– The (i,j) component of the 
stoichiometric matrix tells how the 
number of copies of the i-th reactant 
is changed as a result of the j-th
reaction taking place

– Writing v depends on the chosen 
modeling paradigm (e.g., mass 
action) and accounts for both 
directions of a reversible reaction

Example: 2A->B, B->A, A+B->2B

The stoichiometric matrix:

X=(A B)t

v=(v1 v2 v3)t,
• Where v1=k1A2(t), v2=k2B(t), 

v3=k3A(t)B(t)

The system of differential 
equations is then dX/dt=Sv:

• dA/dt=-2k1A2(t)+k2B(t)-k3A(t)B(t)
• dB/dt=k1A2(t)-k2B(t)+k3A(t)B(t)

1-11

-11-2
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Differential equations

Analytic solutions only for very simple equations 
(linear systems)
For the other types 

• Numerical approximations of the solution, depending on 
the initial state

• Analysis of the steady state: existence, uniqueness, 
stability

– To compute the steady state, one must solve the algebraic 
system of equations where all differentials are equal to 0 and 
all unknowns are scalars (not functions of time)

– This comes to solving the algebraic equation Sv=0, where S is 
the stoichiometric matrix
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An example: the Lotka-Volterra
model

Two populations: predator (X) and prey (Y)
An ecological system where the predator feeds on prey, 
multiplies when prey is available, and eventually dies
The prey multiplies (food assumed to be always 
available) and is killed by the predator
Many models exist. Here is one variant
1. Consumption of prey: X+Y X
2. Growth of predators: X+Y 2*X+Y
3. Growth of preys: Y 2*Y
4. Death of predators: X

Mathematical model associated to it:
• Kinetic rate constants k1, k2, k3, k4 corresponding to reactions

1-4 respectively
• dX/dt=k2X(t)Y(t)-k4X(t)
• dY/dt=-k1X(t)Y(t)+k3Y(t)
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Lotka-Volterra
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Michaelis-Menten kinetics

Other modeling approaches than mass action exist
• Michaelis-Menten
• Hill
• …

Michaelis-Menten kinetics have to do with the 
modeling of enzymatic reactions in some special 
conditions

• E+S <-> E:S -> E+P
• E is an enzyme
• S is a substrate
• P is a product
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Enzymatic reactions

E+S <-> E:S -> E+P 
Mass action formulation:
1. dS/dt=-k1ES+k-1(E:S)
2. d(E:S)/dt=k1ES-(k-1+k2)(E:S)
3. dE/dt=-k1ES+(k-1+k2)(E:S)
4. dP/dt=k2(E:S)

Briggs, Haldane 1925: in some 
conditions, it may be assumed 
that E:S reaches quickly a 
steady state
• This is the case if S(0)>>E
• Also if the binding of E and S is a 

much faster reaction than the 
production of P, k1, k-1 >> k2, 
Michaelis, Menten 1913

5. d(E:S)/dt=0

It follows from equations 2 and 
3 that E+E:S is constant, say 
E+E:S=Etot

Then E=Etot-E:S
Steady state: d(E:S)=0: 

• k1(Etot-E:S)S=(k-1+k2)(E:S)
• E:S=(EtotS)/(S+(k-1+k2)/k1)

Thus, dS/dt=-vmaxS/(S+Km), 
dP/dt=vmaxS/(S+Km)

• Where vmax is the maximal rate 
(velocity) that can be obtained for 
reaction 2 (when the enzyme is 
completely saturated with substrate) 

• vmax=k2Etot

• Km is the Michaelis constant 
• Km=(k-1+k2)/k1, equal to the 

substrate concentration that yields 
the half-maximal reaction rate
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Modeling with differential equations: 
some physical difficulties

Assumes that the time evolution of a chemically reacting 
system is both continuous and deterministic
Difficulties with this assumption

• the time evolution is NOT continuous: molecular population levels 
increase and decrease only with discrete amounts

• the time evolution is NOT deterministic (even when ignoring the 
quantum effects and assuming classical mechanics for the 
molecular kinetics)

– it is only deterministic in the full position-momentum phase space 
(knowing the positions and velocities of all molecules)

– it is not deterministic in the N-dimensional space of the species 
population numbers

However:
• in many cases the time evolution of a chemical system can be 

treated as continuous and deterministic
• the difficulties come when some species populations are small, or 

in conditions of chemical instability
• Solution in these cases: stochastic models!
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Mathematical models

Stochastic model
• Given the current state of 

the system, many possible 
future behavior are possible

• Probability distributions 
dictate the behavior of the 
system

• Well-suited to model 
individual, rather than 
average behavior

• Typical
– Number of molecules are 

modeled
– Reactions are taking place 

following “collisions” among 
the reactants

– Markov processes

Deterministic model
• Given the current state of 

the system, all future 
behavior of the system is 
uniquely defined

• Usually the model reflects 
the average behavior of 
the observed system

• Typical methods used: 
differential or difference 
equations

• Typical:
– Concentrations of 

molecules are modeled
– Reactions are taking place 

diffusion-like (gradient-
like)

– Differential equations
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Modeling with stochastic processes

Modeling paradigm
• The objects 

– the number of copies of all 
metabolites of interest

– the rates of all reactions

• Main assumptions
– The system is well-stirred
– The system is at 

thermodynamical equilibrium

• Methods
– Those of probability theory
– Not part of “classical math”: 

“only” about 200 years old
– Some expertise from modeling 

in physics, especially in 
quantum physics

Versus differential equations
• The objects 

– the concentrations of all 
metabolites of interest 

– the rates of all reactions

• Main assumptions
– The system is well-stirred
– The system is at 

thermodynamical equilibrium

• Methods
– Those of mathematical analysis 

(continuous mathematics)
– Arguably the most developed 

part of mathematics
– Great expertise from modeling 

in physics, chemistry, 
engineering
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Writing the model

Stochastic model
• It is the description of a 

continuous time, discrete state 
Markov process

• Grand probability function: 
P(X1,X2,…,Xn,t) is the probability 
that at time t there are X1
molecules of species S1, …, Xn
molecules of species Sn

• The grand probability function
may be obtained through a 
differential equation: the 
chemical master equation

– Reason what is the probability of 
being in a certain state after one 
step

Versus differential equations
• The reaction rate gives the 

amount with which the 
concentration of every 
metabolite involved in the 
reaction changes per unit of 
time

– For a consumed metabolite, 
the change will be –v(t)

– For a produced metabolite, the 
change will be v(t)
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The grand probability function

P(X1,X2,…,Xn,t)= the probability that at time t there are: 
• X1 molecules of species S1, 
• X2 molecules of species S2, 
• …, 
• Xn molecules of species Sn

Knowing this grand probability function, we may get for 
example:

• the expected amount of molecules of species S1 at time t:

• the standard deviation for the amount of molecules of species S1 at time t: 
(E(X1

2,t)-E2(X1,t))1/2, where
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The chemical master equation 
approach

The chemical master equation is describing the time 
evolution of the grand probability function

• Write P(X1,…Xn,t+dt) as the sum of probabilities of all 
possible ways to be in state (X1,…Xn) at time t+dt, where 
dt is infinitesimally small

We need a way to reason about the probabilities of 
various reactions to be triggered in the next 
infinitesimal interval (t,t+dt)
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Stochastic reactions

Consider as an example a reaction S1+S2 S3
• Consider the probability that a particular (not arbitrary!) pair of molecules 

S1-S2 will collide in the next vanishingly small time interval dt

Crucial assumption: the system is well stirred and at thermal 
equilibrium

• as such, the molecules are at all times randomly and uniformly distributed 
throughout the volume

• reason now about the average relative speed of that pair of molecules and 
the volume that one of them is spanning with that speed in the time 
interval (t,t+dt) and consider the probability of the other molecule being in 
that volume 

– P=Vcol/V=π(r1+r2)2v12dt/V
– For Maxwell-Boltzman velocity distributions: v12=(8kT/πm12)1/2, where 

m12=m1m2/(m1+m2) is the reduced mass and k is the Boltzman constant

• It follows that the probability of that particular pair of molecules reacting in
the next infinitesimal time interval (t,t+dt) is c⋅dt

• Consequently, since there are X1⋅X2 pairs, we have X1⋅X2⋅c⋅dt the 
probability that one such reaction will occur somewhere in the volume in 
the next infinitesimal time interval (t,t+dt)



June 29, 2008, 
Bucharest, Romania

The stochastic approach to molecular kinetics
9

Stochastic reactions

The fundamental hypothesis of the stochastic formulation 
of chemical kinetics:

• the average probability that a particular combination of reactants
will react according to a given reaction R in the next infinitesimal 
time interval dt is cR⋅dt, for a certain constant cR

• the constant depends on the reaction (the properties of the 
reactants) and on the temperature of the system 

• this is a reformulation of the principle of mass action!

The probability of a reaction R taking place in the next 
infinitesimal time interval (t,t+dt) is NR⋅c⋅dt, where NR is 
the number of all combinations of reactants in the current 
state

• for a reaction S1+S2 S3, NR=X1⋅X2

• for a reaction 2S1 S4, NR=X1(X1-1)/2

June 29, 2008, 
Bucharest, Romania
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Writing the chemical master 
equation

Assume we have m reactions R1,R2,…, Rm and n molecular species S1, 
S2, …,Sn

The chemical master equation:
• Write P(X1,…Xn,t+dt) as the sum of probabilities of all possible ways to 

be in state (X1,…Xn) at time t+dt, where dt is infinitesimally small
• Having an infinitesimally small time interval implies that at most one 

reaction takes place in that interval
• P(X1,…Xn,t+dt) is the probability that 

– we were in state (X1,…Xn) at time t and no reaction took place, plus
– the probability of having arrived in state (X1,…Xn) after one reaction occurred

o for each reaction Rk, let akdt be the probability of reaction Rk occurring in 
the interval (t,t+dt), given the state (X1,…Xn) at time t

o for each reaction Rk, let Bkdt be the probability that reaction Rk occurs in 
(t,t+dt), resulting in the state (X1,…Xn) 
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Example 1
Examples

• A-> 
• Initial amount of A molecules: N0

• Let c be the stochastic constant associated to this reaction

• P(X1,…Xn,t+dt) is the probability that 
– we were in state (X1,…Xn) at time t AND no reaction took place in (t,t+dt), plus
– the probability of having arrived in state (X1,…Xn) after one reaction occurred

• P(n,t+dt) = P(n,t)(1-c⋅n⋅dt) + P(n+1,t)c⋅(n+1)⋅dt
• Note that P(N0,t+dt)=P(N0,t)(1-c⋅N0⋅dt)

• P(n,t+dt)-P(n,t) = -c⋅n⋅P(n,t)⋅dt + P(n+1,t)c⋅(n+1)⋅dt
• P(N0,t+dt)-P(N0,t)=-c⋅N0⋅P(N0,t)⋅dt

• dP(n,t)/dt=c( -n P(n,t) + (n+1) P(n+1,t)), for n<N0

• dP(N0,t)/dt= - k N0 P(N0,t), which can be solved: P(N0,t)=e-kN
0
t

0 2 3 4 5 61
# of A
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Example 2

Example 2:
• A+B->A+2B
• B->A

# of A # of A

# of B# of B

m

n

m-1

n-1

n+1

Leaving the state (m,n) Arriving in the state (m,n)

m m+1

n

n-1

n+1
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Example 2 continued
The reactions

• A+B->A+2B, let k1 be the stochastic constant for this reaction
• B->A, let k2 be the stochastic constant for this reaction

Writing the CME:
• P(m,n,t+dt)=P(m,n,t)(1-k1mndt-k2ndt)+

P(m,n-1,t)k1m(n-1)dt+
P(m-1,n+1,t)k2 (n+1)dt

• P(m,n,t+dt)-P(m,n,t)= -(k1mn+k2n) P(m,n,t)dt+P(m,n-1,t) k1m(n-
1)dt+P(m-1,n+1,t)k2(n+1)dt

• dP(m,n,t)/dt= – (k1mn + k2n) P(m,n,t) + k1m(n-1) P(m,n-1,t) + k2 (n+1) 
P(m-1,n+1,t)

# of A

# of B# of B

m

n

m-1

n-1

n+1
Leaving the state (m,n) Arriving in the state (m,n)

m m+1

n

n-1

n+1

# of A
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Example 3

Consider the following reactions where M is an mRNA species and P is 
the corresponding protein species

• mRNA production: M
• mRNA degradation: M
• protein synthesis: M P
• protein degradation: P

The stochastic constants associated to these 4 reactions are k1, k2, k3, 
k4, respectively

Write the CME: each reaction contributes one positive term (gain) and 
one negative term (loss)

dP(m,p,t)/dt=-k1P(m,p,t) – k2mP(m,p,t) – k3mP(m,p,t) – k4pP(m,p,t)
+k1P(m-1,p,t)+k2(m+1)P(m+1,p,t)+k3(m+1)P(m+1,p-1,t)+k4(p+1)P(m,p+1,t)
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Towards numerical simulations

The chemical master equation is exact and elegant
Difficult to use it for numerical simulations

• it can be analytically solved only for the simplest reactions
• it describes the evolution of the probability of all states in 

time
– it does not give directly the transitions from state to state

• the differential equations for the time evolution of the 
molecular populations Xi(t) may be written, but they 
involve the expected values of higher powers Xi

n and thus 
lead to infinite systems of ODEs

Solution: Gillespie’s stochastic simulation algorithm 
(SSA), 1976, 1977
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Gillespie’s SSA: foundations

Assume we have m reactions R1,R2,…, Rm and n molecular 
species S1, S2, …,Sn

Given that the system is in state (X1,…,Xn) at time t, we need to 
answer two questions in order to simulate the evolution of the 
system

• when will the next reaction occur?
• which reaction will it be?

We combine the answers to these 2 questions in the following 
joint probability distribution:

• P(τ,μ)dτ = the probability that, given the state (X1,…,Xn) at time t, the next 
reaction will occur in the infinitesimal time interval (t+τ,t+τ+dτ) AND it will 
be reaction Rμ

• note that if we thought about the probability of a reaction occurring exactly 
at time t+τ, then the probability would be 0

Strategy: based on CME, deduce the analytical expression of 
P(τ,μ)
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Gillespie’s SSA: foundations

Given the state (X1,…,Xn) at time t, we need to compute
• P(τ,μ)dτ = the probability that the next reaction will occur in the 

infinitesimal time interval (t+τ,t+τ+dτ) AND it will be reaction Rμ

Let hμ be the number of distinct combinations of reactants 
for reaction Rμ in the state at time t+τ (same as at time t!)

• then, as observed for the CME, the probability that reaction Rμ will 
occur in the infinitesimal time interval (t+τ,t+τ+dτ) is hμcμdτ

Let P0(τ) be the probability that no reaction occurs in the 
time interval (t,t+τ) 

• Then P(τ,μ)dτ=P0(τ)⋅hμcμdτ
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Gillespie’s SSA: foundations

Given the state (X1,…,Xn) at time t, we need to compute
• P(τ,μ)dτ = the probability that the next reaction will occur in the 

infinitesimal time interval (t+τ,t+τ+dτ) AND it will be reaction Rμ

• P(τ,μ)dτ=P0(τ)⋅hμcμdτ

We need to compute P0(τ), the probability that no reaction occurs in the 
time interval (t,t+τ) 

• careful because the time interval (t,t+τ) may not necessarily be 
infinitesimal!

Consider first P0(τ+dτ): no reaction occurs in the interval (t,t+τ+dτ) if 
and only if no reaction occurs in (t,t+τ) AND no reaction occurs in the 
infinitesimal interval (t+τ,t+τ+dτ) 

• Thus, P0(τ+dτ)=P0(τ)(1-∑μhμcμdτ), i.e. dP0(τ)/dτ=-P0(τ) ∑μhμcμ

• It follows that P0(τ)=exp(-∑μhμcμτ)
Finally, we obtain that

P(τ,μ)= hμcμe-ατ,
for all τ≥0 and μ=1,…,n, where α=∑μhμcμ
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Gillespie’s SSA

To simulate numerically the time evolution of our 
system starting from the given initial state:

• Generate a pair (τ,μ) according to the probability density 
function P(τ,μ) 

• Adjust the molecular levels according to reaction Rμ
(decrease the level of reactants, increase the level of the 
output species)

• Advance time to t+τ
• Iterate the procedure
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Gillespie’s SSA

We need to generate a pair (τ,μ) according to the probability density 
function P(τ,μ)=hμcμeατ, where α= ∑μhμcμτ

• we first generate the time point τ such that the next reaction (any kind of 
reaction!) occurs in the infinitesimal time interval (t+τ,t+τ+dτ)

• the corresponding probability function is P(τ)=∑μP(τ,μ)=αe-ατ

– To do this, generate a random number r1 in (0,1) and let τ0 be such that 
P(τ<τ0)=r1:

– Thus, τ0=1/α ln(1/r1) is the time point we will consider

• we then select the reaction Rμ according to their relative probabilities of being 

triggered in the current step: P(μ)= P(τ,μ)/∑νP(τ,ν)= hμcμ/α
– To do this, generate a random number r2 in (0,1) and let μ0 be such that 

P(μ≤μ0)=r2

– We consider the distribution F(m)=∑i≤mP(i) and choose μ0 such that F(μ0-
1)<r2≤F(μ0):
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Gillespie’s SSA: summary

This is the only exact simulation algorithm of the 
chemical master equation

• it is essentially just a reformulation of CME
• the crucial point is that there is no time slicing (as in the 

numerical simulation of ODEs): jump to the next time 
point according to the correct probability distribution

Many variants of Gillespie’s SSA exist
• some offer speedups
• some are reformulations for various special cases, such as 

for hybrid models, involving both continuous and discrete 
variables

June 29, 2008, 
Bucharest, Romania

The stochastic approach to molecular kinetics
22

The deterministic and the stochastic 
formulations: conclusions

Deterministic approach
1. based on the concept of 

diffusion-like reactions
2. the time evolution of the 

system is a continuous, entirely 
predictable process

3. governed by a set of ODEs
4. The system of ODEs is often 

impossible to solve
5. it models the average behavior 

of the system
6. assumes that the system is 

well-stirred and at 
thermodynamical equilibrium

7. conceptual difficulties when 
small populations are involved

8. numerical simulations are 
straightforward and fast

9. impossible to reason about 
individual runs rather than the 
average

Stochastic approach
1. based on the concept of 

reactive molecular collisions
2. the time evolution of the 

system is a random-walk 
process through the possible 
states

3. governed by a single 
differential equation: the 
chemical master equation

4. the CME is often impossible to 
solve

5. it models individual runs of the 
system

6. assumes that the system is 
well-stirred and at 
thermodynamical equilibrium

7. no difficulties with small 
populations

8. numerical simulations via 
Gillespie’s SSA are slow

9. only gives individual runs; 
estimate the average through 
many runs
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The heat shock response

Cell’s response to elevated temperatures
Intense research on HSR in the last years

• HSR is a very well-conserved regulatory network across all 
eukaryotes; bacteria have a similar mechanism

– Good candidate for deciphering the engineering principles of regulatory 
networks

• Heat shock proteins are very potent chaperones (sometimes 
called the “master proteins” of the cell)

– Involved in a large number of regulatory processes
– Also in anti-inflammatory processes
– Found in extra-cellular environment, which may suggest they are used 

for signaling
– Major role in the resilience of cancer cells; attractive as targets for 

cancer treatment

• Tempting for a biomodeling, SysBio project because it involves 
relatively few main actors (at least in a first, simplified 
presentation)
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Heat shock response: main actors

Heat shock proteins (HSP)
• Very potent chaperones
• Main task: assist the refolding of misfolded proteins
• Several types of them, we treat them all uniformly in our model with hsp70 

as base denominator

Heat shock elements (HSE)
• Several copies found upstream of the HSP-encoding gene, used for the 

transactivation of the HSP-encoding genes
• Treat uniformly all HSEs of all HSP-encoding genes

Heat shock factors (HSF)
• Proteins acting as transcription factors for the HSP-encoding gene
• Trimerize, then bind to HSE to promote gene transcription

Generic proteins
• Consider them in two states: correctly folded and misfolded
• Under elevated temperatures, proteins tend to misfold, exhibit their 

hydrophobic cores, form aggregates, lead eventually to cell death (see 
Alzheimer, vCJ, and other diseases)

Various bonds between these metabolites
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The molecular model for HSR

Heat shock geneHSE

Heat shock geneHSE

HSPHSP

HSPHSP

HSF

RNA pol

HSP:HSF

MFP

MFP

MFP
MFP

MFP

37°C

42°C
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Our new molecular model

Transcription

1. HSF+HSF<->HSF2

2. HSF+HSF2<->HSF3

3. HSF3+HSE<->HSF3:HSE
4. HSF3:HSE->HSF3:HSE+HSP

Backregulation

5. HSP+HSF<->HSP:HSF
6. HSP+HSF2->HSP:HSF+HSF
7. HSP+HSF3->HSP:HSF+2HSF
8. HSP+HSF3:HSE->HSP:HSF+2HSF+HSE

Response to stress

9. PROT->MFP
10.HSP+MFP<->HSP:MFP
11.HSP:MFP->HSP+PROT

Protein degradation

12.HSP 0
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The flux diagram of the model
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The mathematical model
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The mathematical model

Derived based on the principle of mass action (Guldberg, Waage, 
1864, 1879)

• The flux of each reaction is proportional to the concentration of reactants
• Other principles exist, leading to different formulations of the model

We consider a continuous formulation, based on ODEs
• A stochastic formulation through CME also possible

Given the reactions, writing the differential equations is easy
• dS/dt=Nv, where S is the vector of m reactants, N is the (m x r)-

stoichiometric matrix and v is the vector of r reaction fluxes
– Writing v depends on the chosen modeling paradigm (e.g., mass action) and 

accounts for both directions of a reversible reaction
– The (i,j) component of the stoichiometric matrix tells how the number of 

copies of the i-th reactant is changed as a result of the j-th reaction taking 
place

Example: A+B->A+C: A’s coefficient in this reaction is 0, B’s is -1, C’s is 1
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Modeling of the heat-induced misfolding

Question: how do we model the heat-induced misfolding?
• What is the temperature-dependant protein misfolding rate per 

second?

Adapted from Pepper et al (1997), based on studies of Lepock
(1989, 1992) on differential calorimetry

ϕ(T)=(1-0.4/eT-37) x 0.00001448471257 x 1.4T-37

Formula valid for temperatures between 37 and 45, gives a 
generic protein misfolding rate per second
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Parameter estimation

Data readily available for the goal: Kline, Morimoto 
(1997) – heat shock of HeLa cells at 42C for up to 4 
hours, data on DNA binding (HSF3:HSE)
Requirements for the model:

• 17 independent parameters, 10 initial values to estimate
• 3 conservation relations available
• The model must be in steady state at 37C, which gives 7 more 

algebraic equations (each of them quadratic)
• Altogether: 17 independent values

• Other conditions: total HSF somewhat low, refolding a fast 
reaction, HSPs long-lived proteins
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A good modeling/simulation 
environment 

Our choice: COPASI (www.copasi.org)

• Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., 
Singhal, M., Xu, L., Mendes, P., and Kummer, U. (2006). COPASI 
— a COmplex PAthway SImulator. Bioinformatics 22, 3067-74. 

• User-friendly
• Stochastic and deterministic time course simulation
• Steady state analysis
• Metabolic control analysis
• Mass conservation analysis
• Optimization of arbitrary objective functions
• SBML-based

• Excellent for parameter estimation
• FREE!
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Parameter estimation

Standard estimation procedure in COPASI (and not 
only)
• Give the data and the target function
• Give the list of parameters
• The program scans the range of parameters and makes 

choices; for each choice it evaluates the target function 
against the experimental data (least mean squares)

– The way it scans the space of parameter values depends on 
the chosen method

– Many sophisticated methods currently available
– All are local-optimization methods

• It reports the best set of values

Estimation repeated over and over again, with 
various methods for scanning the parameter 
space, to improve on the score of the fit
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Parameter estimation

Ideal approach: 
• Solve analytically the steady state equations at 37C
• Use the solution to decrease the number of independent 

parameters and initial values
• Do parameter estimation on the remaining independent variables

to fit the model based on the data at 42C

Problem: The steady state (37C) equations cannot be 
solved because they have degree 14 (overall)

February 28, 2008 Computational models of the living cell
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Parameter estimation

Finding values for parameters and initial values so that 
the behavior at 42 is good is not difficult
Problem: a good fit at 42C may not necessarily be in the 

steady state at 37C
• Idea: Change the initial values so that we start in the steady state

at 37
• Outcome: the behavior at 42C is not satisfactory anymore
• Idea: Iterate the procedure, estimating parameters and starting

in the steady state
• Outcome: the procedure does not converge to a good fit
• Explanation: Changing the parameters will change the steady 

state, starting in the new steady state will modify the old behavior
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Strategy for parameter estimation

Use the Kline-Morimoto experimental data to fit parameters
In the fit ask also that the fluctuations at 37C are (close to) 0

• Duplicate the model and run both at the same time (37&42C)

The outcome of (countless rounds of) automated parameter 
estimation:

• OK, but not good enough
• The model is overfit: the HSR is shown to kick-in eventually even at 37C, 

albeit in a very mild form
• Why?
• Answer: we do not start close enough to the steady state!

Idea
• Set the initial values to be equal to the steady state values at 37C

– We remain in the steady state at 37C

• The difference is rather small in absolute terms, because the model was 
already fit to be close to the steady state at 37C

• Test the behavior at 42C

Result
• Excellent: agreement with the experimental data at 42C, steady 

state at 37C
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Parameter fit
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Predictions and validation

1. Higher the temperature, 
higher the response

2. Prolonged transcription at 
43C confirmed 

Unlike previous models

3. Heat shock removed at the 
peak of the response 
confirms a more rapid 
attenuation phase

All data is in relative terms with respect 
to the highest value in the graph so that 
it can be easily compared
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Predictions and validation

Experiment: two waves of heat 
shock, the second applied after 
the level of HSP has peaked
Observation: the second heat 
shock response much milder than 
the first

• The reason is that the cell is 
better prepared to deal with the 
second heat shock

• Therapeutic consequences have 
been suggested: “train” the cell 
for heat shock by an initial milder 
heat shock

The model prediction is in line 
with the experimental observation

• Dotted line: heat shock at 42C for 
two hours, behavior followed up 
to 20 hours

• Continuous line: heat shock at 
42C for two hours, followed by a 
second wave of heat shock after 
the level of HSP has peaked

Skip
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A-posteriori model validation

We had a set of experiments done at Turku Biotech 
Centre

• Idea: measure the levels of HSP at various time points, compare
them with the model predictions

• Difficult (expensive) to measure HSP levels directly
• Cheap way around the problem: use an indicator for HSP

– Use a cell line (human cancer cells) transfected with YFP-encoding 
genes, regulated by the same HSE

– For each time point (15 of them from 0 up to 36 hours of heat shock at 
42C), the fluorescence intensities of each of 10.000 cells are recorded

– Do 3 biological repeats

Skip
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The BTK data

For each time point (up 
to 36 hours of heat shock 
at 42C), the fluorescence 
intensity of 10000 cell is 
recorded

• That should give a measure 
of the number of YFPs in 
the cell (how?)

• That in turn, should give an 
indication of the number of 
HSPs in the cell (how?)

Assumptions:
• The fluorescence intensity is 

proportional to the level of 
YFPs

– not many aggregates!

• The level of synthesized YFP 
is proportional to the level of 
synthesized HSP

– Same regulation mechanism

[HSP] is a prediction of 
the model
Test it against the 
measurements on 
fluorescence intensity
HOW?
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Validation against the BTK 
data

Idea: we test the hypothesis that the stochastic variable 
YFP(t)-E(YFP(0))

is “proportional” to 
HSP(t)-HSP(0)

Formally, we test if the stochastic variables
(YFP(t)-E(YFP(0))) / (HSP(t)-HSP(0))

have the same expected value for all 15 time points t

• The standard way of estimating the expected value of a 
stochastic variable based on a sample is through a confidence 
interval

• Approach: 
– Take 95% confidence intervals for the expected value of each of 

the 15 stochastic variables 
– See if they have a non-empty intersection. 
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95% confidence intervals
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How do we read the results

The intersection of the confidence 
intervals is surely empty
Still, they suggest that the 
expected values may assume 
“somewhat” constant values, with 
a different regime on the intervals 
0-8 hours and 8-36 hours
WHY?

• Short answer: we do not know!
• Suggestions:

– higher death rate for non-
responsive cells 

– longer half-life for YFP under 
sustained heat shock (consistent 
with previous reports that under 
sustained heat shock, the cell “shuts 
down” all “unnecessary” processes)

– YFP is a poor quantitative reporter!!
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HSR and a system-based approach 
to cancer

Previous research proposed HSP as a drug 
target in cancer treatment.
• B.Vastag (2006) Nature Biotechnology

• Idea: lower the level of HSP so that the cancerous cell 
cannot cope with the high level of MFP and becomes 
apoptotic

• Difficulty: the observation was that even if the level of 
HSP is artificially lowered, even more HSP is being 
produced eventually

– HSR kicks in
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HSR and a system-based approach 
to cancer

Better idea: inhibit the whole heat shock response in 
cancer cells

• Approach: find which reactions in our network influences the most 
the level of MFP and target those reaction. 

• Careful that the effects are only triggered for the excited cells and 
not for the normal cells: only cancer cells would be lead to 
apoptosis

We can select the most suitable reactions by comparing 
the scaled sensitivity coefficients at 37C and 42C
Our model suggest 3 different possible reactions to target

• The result is supported by intuition: make the bond HSP:HSF 
more stable, or the bond HSP:MFP more unstable

• Not tested in the lab yet

More complex analysis may be performed in terms of 
multi-dimensional sensitivity analysis


