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e Introduction to the kinetics of microbial recombinant
orotein expression

e Process monitoring: an overview

e Case studies: Prediction of complex process
variables by chemometric modelling

* Process Analytical Technology (PAT)
 Conclusions
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e Introduction to the kinetics of microbial recombinant
protein expression
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Principle configuration of a bioprocess
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Principles of recombinant protein production strategy umumuzreen
Objective: adaptation of recombinant protein production to host cell metabolic
capacity Substrate

l Plasmid replication
Growth !
T~ Host Cell <— rDNA transcription
o Synthesis Machinery l
Reproduction Plasmid
encoded mRNA
, translation

Total Synthesis Capacity

FORMATION of
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Priority TASK: control = need of specific monitoring
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Identification of key variables
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Inadiquate understanding of biological system and observability in real-time
— Complexity
— Lack of on- and in-line sensors

— Unpredictable interaction of recombinant protein with host
metabolism
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* Process monitoring: an overview
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“recombinant protein
factory”
electrical physiological

Only few sensors for direct measurement of key process
variables available!
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State of the art of bioprocess monitoring —
availablility of off-, at-, on- and in-line measurements
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At-, on- and in-line measurements:
Classical signals (exhaust gas, base/acid
consumption)

Spectroscopic methods (Optical-, Infrared-
Dielectric spectroscopy, Mass-
spectrometry)

Biosensors
Electrochemical sensors

L _ Sterilisation!!
Flow injection analysis,.....

:

Real time data

-+

Department of Biotechnology

Off-line analysis:

Lab-on-a-chip (DNA/ RNA/ protein
guantification)

Proteomics (DIGE)
DNA p-arrays (transcription profiling)

Surface plasmon resonance (biomolecular
interaction)

Chromatographic methods (GC, HPLC)

highly significant
off-line data sets

Solution: generate correlations

1 1

“on-line” monitoring of complex variables by simulation
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Overview of our currently used in- and on-line
sensor systems
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Dielectric spectroscopy:

Applied Llfe S eeeeeeee Vienna
Department of Biotechnology

* Intact cells build up charge in electrical field (0.2 - 10
MHz) due to non-conducting nature of the cell

» plasma membrane act as capacitors

e resulting capacitance (pF) is proportional to number
and cell size

Biomass Monitor BM214M®

Optical fluorescence spectroscopy:.

« Two-dimensional, multi-wavelength fluorescence
spectroscopy

e excitation 270nm — 550nm / emission 310nm -
590nm -2 resulting in 150 excitation/emission
wavelength combinations

-~ D1 N imimm

Near Infra Red spectroscopy:
* NIR 850 nm

TruCell™ www.finesse.com
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Physical principle

« Application of a radio-frequency electrical field (0.2 - 10 MHz) to
fermentation broth

» Intact cells build up charge due to non-conducting nature of the cell
plasma membrane and therefore act as capacitors

 Measurement of resulting capacitance (pF), which is proportional to
number and cell size (= measurement of membrane enclosed volume)

- Pro’s:
» Good correlation to biomass

- Con’s:
» No direct calibration possible due to changes
in cell size
» Additional measurement of conductivity
(mS/cm) required

Biomass Monitor ABER Instruments BM214M®
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Two-dimensional, multi-wavelength fluorescence spectroscopy
Fluorescent properties of biogenic substances are measured

Wavelength range: excitation 270nm — 550nm / emission 310nm - 590nm
in steps of 20 nm - resulting in 150 excitation/emission wavelength
combinations

Pro’s:

» Measurement of biogenic fluorophores which are
directly involved in metabolic pathways and
components

» Multivariate data set

» No fouling

» Rapid measurement (interval for a full scan 90 sed

Con’s:
» No direct correlation with variables of process
operation
» Interference of sample matrix DELTA BioView®
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—  Riboflavin, FAD, FMN 460/520, 380/520
—  NAD(P)H 340/460
—  Pyridoxine, Pyridoxamine, Pyridoxal-5-P 330/400, 400/500
—  Tryptophane 290/350
—  Tyrosine 280/310
—  Phenylalanine 270/290

(Marose et al., 1998)
Spectra of a bioprocess
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Near Infra Red spectroscopy:
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e Principle: NIR 850 nm
 range: 0 — 4 AU (Absorbance Units)

« until ODgy, >350

- Pro’s:
» Good correlation to biomass

- Con’s:
> No direct calibration possible

TruCell™ www.finesse.com
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In- and on-line signals iyt vt e OO
Sensor device Number of signals
O, off gas 1
CO, off gas 1
Base consumption 1

Dielectric spectroscopy (capacity, conductivity) |2

Multi-wavelength fluorescence 150
NIR 1
total 156

Large data sets
—> Data mining — screening of relevant variables
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Application of chemometric methods for data analySis s, .. 2.
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* No direct measurement of physiological meaningful
variables possible

« Variety of on- and in-line signals available
« Highly developed off-line analytics

Needs:

» Mathematical (chemometric) methods to extract
meaningful, yet hidden information and find correlations
to off-line variables

Goal:

» Real-time estimation of complex biological variables
utilising available on-line sensor signals
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e Case studies: Prediction of complex process
variables by chemometric modelling
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Data flow and tools for pre-processing and me=ader)}
modelling of data s

Pre-processing of data
Filtering and interpolation (Matlab)

V

4 N
Data mining - screening of relevant on-line data
Kohonen Self Organzing Maps based on Ward distance Cluster analysis

(Viscovery® Profiler (Eudaptics GmbH Vienna)) P

l

Modelling of data - selection of model type
Partial Least Squares (PLS)
Artificial Neuronal Network (ANN) y

N

N
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Data mining - screening of relevant on-line data
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SOM’s (Self organising maps — Kohonen* algorithm)

E =3 ha|w %[ g(x)d"x

Department of Biotechnology

F

. e

\\
lO 1O 10 ll 11 11 1112

PURUSUSURRLUR
16 16 16 16 16 16 16 1.7 17

s sanal | IR | ©X610/ | ex270/ | ex550/

g em550 | em550 | em590
correlation- | ) g0/ | 0 9982 | 0.8894 | 0.1403
coefficient

ex270/em550

ol i

ex510/em550

=

16 17 17 18 19 19 20 21 21 22

\
94 110 125 141 157 172 188

approx. 60 % of fluorescence signals:

correlation coeffitient > 0.75

ex550/em590

| 88+’

|
N \ ‘ \ ‘
9

10 10 lO 10 11 ll 11

*T. Kohonen, Springer,
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e Non-linear model:

— Partial least squares (PLS)

> reduction of multidimensional data sets to lower
dimensions for analysis

— Radial Basis Function Neural Network (RBF): Neural networks are
better suited for non-linear data

» supervised learning method
» non-linear transfer function
» training by vector weighting

Quality of estimation:
» Root Mean Square Error of Prediction (RMSEP): RMSEP represents

the overall error of the modelled data
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Used data sets

 On-line
— Exhaust gas composition: O,, CO,
— Base consumption rate
— Fluorescence signals
— Capacity, conductivity

— Bacterial Dry Matter (BDM) (gravimetric)

— Total Cell Number (TCN) / Dead Cell Number (DC) (flow cytometry)
— Product (mg/g BDM) (electrophoretic)

— Plasmid Copy Number (PCN) (electrophoretic)
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Prediction of key variables in fed-batch cultivation
applying RBF-Network
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Input: Classical signals (base consumption, exhaust-gas analysis)
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Arrows indicate induction of recombinant protein expression

F. Clementschitsch et al. (2005), Journal of Biotechnology, 2, 120, 183-196.
F. Clementschitsch et al. (2006), Microbial Cell Factories, 5,19-30
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Prediction of key variables in fed-batch cultivation = ader)} ()
applying RBF-Network
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Input: Dielectric spectroscopy signals, classical signals (capacity, conducitvity,
exhaust-gas analysis, base consumption)
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Arrows indicate induction of recombinant protein expression

F. Clementschitsch et al. (2005), Journal of Biotechnology, 2, 120, 183-196.
F. Clementschitsch et al. (2006), Microbial Cell Factories, 5,19-30
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Prediction of key variables in fed-batch cultivation = ader)} ()
applying RBF-Network
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Input: Selected signals (capacity, conducitvity, selected fluorescence wavelength
combinations, exhaust-gas analysis, base consumption)
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Arrows indicate induction of recombinant protein expression

F. Clementschitsch et al. (2005), Journal of Biotechnology, 2, 120, 183-196.
F. Clementschitsch et al. (2006), Microbial Cell Factories, 5,19-30
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Prediction of key variables in fed-batch cultivation pmere acmT ) (L)
applying PLS
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Input: Selected signals (capacity, conducitvity, selected fluorescence wavelength
combinations, exhaust-gas analysis, base consumption)

Product [mg/g BDM]

BDM [g/l]

o
(=]

o
(=)

N W
=)

—&—Measuremenf

I Prediction | -

..... RMSEP31

0 4 38 1216202428
Feed [h]

—&—Measuremenf

|| — Prediction

0 4 8

:
N n i

12 16 20 24 28
Feed [h]

TCN [*10exp9/ml]

qP [mg/g*h]

150

—
I
[2al

= 100

100

751

50

25}

| —&—Measuremenf
—Prediction

Feed [h]

—e—Measurement
—Prediction

0 4 8
Feed [h]

12 16 20 24 28

12 16 20 24 28

10

—E—Measuremenf
—Prediction

7.5}

5

RMSEP 0.9

DC [%]

2.5

0

12 16 20 24 28
Feed [h]

4

0

100

—e—Measurement
|| — Prediction

- [RMSEP 0.4

12 16 20 24 28
Feed [h]

4 8

Arrows indicate induction of recombinant protein expression

F. Clementschitsch et al. (2005), Journal of Biotechnology, 2, 120, 183-196.
F. Clementschitsch et al. (2006), Microbial Cell Factories, 5,19-30
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Example: application of NIR for monitoring
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40 2.00
35 -
30 - - 1.75
S 25 -
= =
20 - + 1.50
o -
S -~ max. deviation < 2g (6 %) <
)
o 15 -
n
10 - + 1.25
—— BDM calculated BDM analyzed — NIR in-line signal
5 _
0 | 1.00
0.00 4.00 8.00 12.00 16.00 20.00 24.00 28.00
time [h]

f(x) = p1*x™4 + p2*x"3 + p3*x"2 + p4*x + p5
pl =-81.13, p2 = 650.3, p3 = -1825, p4 = 2201, p5 = -968.9
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* Achievements:
— On-line prediction of key variables

— Set up of control loops enabled

e Limitations
— Monitoring of deviations on molecular level

(e.g. stress response)
— Validability of prediction by chemometric methods not fully

accepted by regulatory authorities

——> Extension of on-line data base
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Proton Transfer Reaction Mass Spectrometry:

Reaction: VOCs charged by
H,O*+ R - RH*+ H,O

secondary

quadrupole  ©lectron
mass analyzer Multiplier

drift tube

hollow

. . . cathode Proton transfer reaction
Detection limit: 500 pptv i PANVOC) > PAMO)

Mass range: 1 — 300 am

air inlet

- Pro’s:
» Non invasive measurement
» Measurement of metabolites
» Rapid measurement (approximately 3 minutes per cycle)
» Soft ionization — no fragmentation

- Con’s:
» Mass information but no structure information Www.ptrms.com
www.ionimed.com
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In- and on-line signals iyt vt e OO
Sensor device Number of signals
O, off gas 1
CO, off gas 1
Base consumption 1

Dielectric spectroscopy (capacity, conductivity) |2

Multi-wavelength fluorescence 150

NIR 1
PTR-MS Up to 60
total Up to 216
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Application of PTR-MS for process monitoring sty ot ot 7o e
Department of Bioteohmology
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PTR-MS enables the transition from pattern recognition to quantitative
analysis of volatile metabolites
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 Non invasive sampling device

« Sensor for early detecting of different physiological

states
— e.g. growth and non growth associated recombinant protein

production and overburden of the cell

* Real time availability of complex variables for process
control
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* Process Analytical Technology (PAT)
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Process Analytical Technology (PAT) and Quality by ggm@ 80))
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* Process Analytical Technology initiative:

— a system for designing, analyzing, and controlling manufacturing
through timely measurements (i.e. during processing) of critical
guality and performance attributes of raw- and in-process
materials and processes with the goal of ensuring final product

guality. (http://www.fda.gov/Cder/OPS/pat.htm)

* Required tools for the implementation of PAT :
— Multivariate data acquisition and data analysis tools
— Modern process analyzers or process analytical chemistry tools
— Extension of process monitoring and control tools

GOAL.: definition of the design space to gain more
flexibility in operation
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e Conclusions
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« Chemometric modelling and prediction contribute to the
Improvement of process monitoring and control

e Contribution of individual sensor signals:

— Classical signals do not contain enough information to allow the
estimation of complex process variables

— Monitoring of key variables achieved through signal combination

— Selection of input signal improves quality of prediction

« PTR-MS technology enables
— early detection of deviations and different physiological states
— real-time quantification of specific process relevant compounds
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Complex diagnostics platform comprising in-, on- and off-line
data delivers a broad spectrum of information

—> basis for PAT and QbD compliance
—> enables the definition of the designs pace (ICH Q8)
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