NOVEL FIBER OPTIC SENSING ARCHITECTURES BASED ON SENSITIVE NANOFILMS

Ignacio R. Matias, Francisco J. Arregui and Richard O. Claus

natxo@unavarra.es parregui@unavarra.es roclus@nanosonic.com
Summary

- Introduction to the fiber optic sensor market
- Nanotechnology and fiber optic sensors?
- The Electrostatic Self-Assembled Monolayer Method
- Possible sensing architectures based on nano-films
 - Tapered ends
 - Tapered optical fibers
 - Hollow core fibers
 - Long period gratings
 - Optical fiber gratings
 - NanoFabry-Perot Cavities
- Conclusions
Summary

- Introduction to the fiber optic sensor market
- Nanotechnology and fiber optic sensors?
- The Electrostatic Self-Assembled Monolayer Method
- Possible sensing architectures based on nano-films
 - Tapered ends
 - Tapered optical fibers
 - Hollow core fibers
 - Long period gratings
 - Optical fiber gratings
 - NanoFabry-Perot Cavities
- Conclusions
Technology Overview. Advantages

- Small and Lightweight
- Possibility of being embedded in composite materials
- Passive nature
- Large dynamic range
- Single- & Multi-Point Sensing Configurations
- Large wideband
- Low attenuation
- Multiplexing techniques
- EMI immunity
Technology Overview. Classification

Type of optical fiber sensors

Type of Modulation
- Intensity
- Interferometric
- Polarimetric
- Spectroscopic

Nature of transduction
- Intrinsic
- Extrinsic

Spatial distribution
- Point
- Distributed
- Quasi-distributed

Physical Magnitude
- Voltage/current
- Temperature
- Radiation
- Biomedical
- Chemical/gas
- Electro magnetic fields
- Strain
- Rotation
- Mechanical
- Bending/torsion, velocity, vibration/acceleration, displacement/location, pressure/acoustics, force

Technology Overview. Extrinsic sensors

Extrinsic Optical Fiber Sensors

- Fluorescence
- Laser Doppler Velocimetry
- Reflection Scattering
- Photoelastic effects
- Absorption
- External cavities (EFPI)
- Total Internal Reflection
- Encoder Plates Disks
- MEMS OSA
- Numerical Aperture
- Evanescent

Novel fiber optic sensing architectures based on sensitive nanofilms

Technology Overview. Intrinsic sensors

Fiber Bragg Gratings (FBG)
- Multicore FBG
- Tunable FBG
- D-Shaped FBG
- Chirped FBG

Long period gratings
- Laser fiber

Fiber Lasers/Doped Fibers

Rayleigh

Blackbody

Microbend

Interferometric

Mode Coupling
- Sagnac
- Mach-Zehnder
- Michelson
- Ring Resonator
- Fabry-Perot

Raman

Photonic Crystal Fibers

Distributed/Quasi distributed
- In line
- Micromachined
- Self-Assembly

Intrinsic Optical Fiber Sensors

Band Gap Fibers
- Bragg Fibers
- Index-guiding

Novel fiber optic sensing architectures based on sensitive nanofilms

Fiber Optic Sensing System Key Building Blocks

- Specialty Optical Fibers
- Packaging
- Light Sources
- Detectors & Interrogators
- User Interface
- Data Acquisition & Interpretation

Design, Planning and Installation

Courtesy of Alexis Méndez, MCH Engineering, LLC
Novel fiber optic sensing architectures based on sensitive nanofilms

Fiber Optic Market Status

- Fragmented
- Niche markets
- Foothold in niche applications
- Slow adopting industries
- Positive investment environment
- Major franchises emerging
- Positive and continued steady growth
- Important growth in chemical/bio-detection

Market Drawbacks

- Unfamiliarity with the technology
- Conservative/no-risk attitude of some industries
- Need for a proven field record
- Compatibility with existing equipment
- Cost
- Availability of trained personnel
- Turn-key type systems (total sensing solution)
- Lack of standards
- Quality, performance, packaging & reliability deficiencies across vendors
- Major sensing initiatives likely dominated by wireless

 Courtesy of David Huff (Oida) Source: Quorex
Novel fiber optic sensing architectures based on sensitive nanofilms

Sensors Market Size

Development of the World Market Share of Fiber Optical Sensors until 2008

US $ Million

<table>
<thead>
<tr>
<th>Year</th>
<th>Market Size (US $ Million)</th>
<th>Market Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>175</td>
<td>0.54%</td>
</tr>
<tr>
<td>2003</td>
<td>283</td>
<td>0.67%</td>
</tr>
<tr>
<td>2008</td>
<td>1450</td>
<td>2.87%</td>
</tr>
</tbody>
</table>

Average of annual growth rate: 23.5%

Source: INTECHNO CONSULTING
Novel fiber optic sensing architectures based on sensitive nanofilms

Applications

Civil (bridges, roads, dams, tunnels)

Oil & Gas (Reservoir monitoring, downhole P/T sensing, seismic arrays)

Energy Industry (Power plants, Boilers & Steam turbines, Power cables, Turbines, Refineries)

Transportation (Rail monitoring, Weight in motion, Carriage safety)

Aerospace (Jet engines, Rocket & propulsion systems, Fuselages)

Border security and power line monitoring

Courtesy of David Huff and Alexis Mendez
Novel fiber optic sensing architectures based on sensitive nanofilms

Optical Fiber Sensor Market Revenues Breakdown

![Graph showing Optical Fiber Sensor Market Revenues Breakdown from 2002 to 2010.]

Courtesy of David Huff (Oida). Source: Light Wave Venture
Novel fiber optic sensing architectures based on sensitive nanofilms

Optical Fiber Sensor Market Forecast

![Graph showing Optical Fiber Sensor Market Forecast from 2006 to 2010. The graph includes three trends: Conservative, Potential, and Optimistic, with the Optimistic trend showing the highest growth.](Courtesy of David Huff (Oida). Source: Light Wave Venture)
Summary

- Introduction to the fiber optic sensor market
- Nanotechnology and fiber optic sensors?
- The Electrostatic Self-Assembled Monolayer Method
- Possible sensing architectures based on nano-films
 - Tapered ends
 - Tapered optical fibers
 - Hollow core fibers
 - Long period gratings
 - Optical fiber gratings
 - NanoFabry-Perot Cavities
- Conclusions
Nanotechnology and fiber optic sensors?

Nanostructure with a size between molecular and microscopic layers of subwavelength thickness (*bottom-up*).
Novel fiber optic sensing architectures based on sensitive nanofilms

Nanotechnology and fiber optic sensors?

Deposition techniques for sensing coatings in OFS

- Chemical vapor deposition
- Spin, dip coatings
- Sputtering in a radio frequency
- Gel solutions
- Layer-by-layer
- Langmuir-Blodgett
- Electron beam, physical and thermal evaporating
- planar magnetron systems
Summary

- Introduction to the fiber optic sensor market
- Nanotechnology and fiber optic sensors?
- The Electrostatic Self-Assembled Monolayer Method
- Possible sensing architectures based on nano-films
 - Tapered ends
 - Tapered optical fibers
 - Hollow core fibers
 - Long period gratings
 - Optical fiber gratings
 - NanoFabry-Perot Cavities
- Conclusions
Introduction

- **Today**: Layer-by-Layer Electrostatic Self-Assembly (ESA) is one of the most promising techniques for the deposition of nanostructured tailored materials on complex surfaces.

Possible ESA substrates: metals, plastics, ceramics, oxydes, semiconductors with different sizes and shapes such as prisms, concave or convex surfaces.

Possible ESA coating materials: metals, semiconductors, polymers, dyes, indicators, quantum dots, enzymes and many others (Au, Pt, Al₂O₃, Fe₃O₄, SiO₂, TiO₂, ZrO₂, poly(sodium-4-styrenesulfonate) (PSS), poly(diallyldimethyl ammonium chloride) (PDDA), poly acrylic acid (PAA), poly(allylamine hydrochloride) (PAH), poly R-478, poly S-119, Neutral Red, Fluorescein, HPTS, PPV, Prussian Blue, Glucose Oxidase, Silica, Quantum Dots...
Novel fiber optic sensing architectures based on sensitive nanofilms

The ESA Method: diverse applications

- **PRISMS**
 - NANOSONIC, INC. R. O. Claus et al.
- **LENS**
- **FLEXIBLE SUBSTRATES**
 - SUPERHYROPHOBIC SURFACES
 - M.I.T., M. F. Rubner et al.
- **MICROSHERES**
 - TEXAS A&M, M. McShane et al.
- **COATINGS ON BIOLOGICAL CELLS**
 - University of Melbourne, F. Caruso et al.
Summary

- Introduction to the fiber optic sensor market
- Nanotechnology and fiber optic sensors?
- The Electrostatic Self-Assembled Monolayer Method
- Possible sensing architectures based on nano-films
 - Tapered ends
 - Tapered optical fibers
 - Hollow core fibers
 - Long period gratings
 - Optical fiber gratings
 - NanoFabry-Perot Cavities

- Conclusions
Nanostructured coatings onto tapered ends of optical fibers

Glucose sensing

Novel fiber optic sensing architectures based on sensitive nanofilms

Summary

- Introduction to the fiber optic sensor market
- Nanotechnology and fiber optic sensors?
- The Electrostatic Self-Assembled Monolayer Method
- Possible sensing architectures based on nano-films
 - Tapered ends
 - Tapered optical fibers
 - Hollow core fibers
 - Long period gratings
 - Optical fiber gratings
 - NanoFabry-Perot Cavities
- Conclusions
Novel fiber optic sensing architectures based on sensitive nanofilms

Sensors based on Tapered Optical Fibers

Humidity sensing. Spectral characterization

Transmitted Power (dB)

Relative Humidity (%)

Bilayers (5/div)

Experimental response of a 20m waist diameter TOF-based humidity sensors to RH corresponding to three working points of coating thicknesses: 23, 26 and 62 bilayers

Novel fiber optic sensing architectures based on sensitive nanofilms

Sensors based on Tapered Optical Fibers

Humidity sensing. Response time

Humidity response time compared to a commercial one
(Blue box humidity sensor T12000/6, from Philip Harris)

Experimental response to the human breath

Novel fiber optic sensing architectures based on sensitive nanofilms

Sensors based on Tapered Optical Fibers

Gliadin sensing (gluten detection)

Antibody Injection

Binding of antibody

Transducer

Anti-Gliadin Antibody

Peroxidase

Antigen

Summary

- Introduction to the fiber optic sensor market
- Nanotechnology and fiber optic sensors?
- The Electrostatic Self-Assembled Monolayer Method
- Possible sensing architectures based on nano-films
 - Tapered ends
 - Tapered optical fibers
 - Hollow core fibers
 - Long period gratings
 - Optical fiber gratings
 - NanoFabry-Perot Cavities
- Conclusions
Novel fiber optic sensing architectures based on sensitive nanofilms

Sensors based on Hollow core fibers

Humidity sensing based on evanescent wave

Spectral characterization

Transmitted Optical Power (dB)

Thickness of nanofilm (nm)

Number of bilayers

“Nanofilms on hollow core fiber-based structures: an optical study”.
Novel fiber optic sensing architectures based on sensitive nanofilms

Sensors based on Hollow core fibers

Humidity sensing based on evanescent wave

breathing monitoring

Summary

- Introduction to the fiber optic sensor market
- Nanotechnology and fiber optic sensors?
- The Electrostatic Self-Assembled Monolayer Method
- Possible sensing architectures based on nano-films
 - Tapered ends
 - Tapered optical fibers
 - Hollow core fibers
 - Long period gratings
 - Optical fiber gratings
 - NanoFabry-Perot Cavities
- Conclusions
Novel fiber optic sensing architectures based on sensitive nanofilms

Nanostructured coatings on Long Period Gratings: a pH sensor

Optical response of one of the attenuation bands of a LPG coated with [PAH/ PAA] coatings when is submitted to pH changes

Summary

- Introduction to the fiber optic sensor market
- Nanotechnology and fiber optic sensors?
- The Electrostatic Self-Assembled Monolayer Method
- Possible sensing architectures based on nano-films
 - Tapered ends
 - Tapered optical fibers
 - Hollow core fibers
 - Long period gratings
 - Optical fiber gratings
 - NanoFabry-Perot Cavities
- Conclusions
Novel fiber optic sensing architectures based on sensitive nanofilms

EXPERIMENTAL RESULTS - VOLATILE ORGANIC COMPOUND SENSOR
DI CHLOROMETHANE (DCM)

A - PURGED AIR
B - 0.6 gr/l DCM
C - SATURATION OF DCM
Novel fiber optic sensing architectures based on sensitive nanofilms

Different spectral responses

Sensor 1

Sensor 2

Novel fiber optic sensing architectures based on sensitive nanofilms

1D PBG with defects

Refractometer

Summary

- Introduction to the fiber optic sensor market
- Nanotechnology and fiber optic sensors?
- The Electrostatic Self-Assembled Monolayer Method
- Possible sensing architectures based on nano-films
 - Tapered ends
 - Tapered optical fibers
 - Hollow core fibers
 - Long period gratings
 - Optical fiber gratings
 - NanoFabry-Perot Cavities

- Conclusions
Novel fiber optic sensing architectures based on sensitive nanofilms

NFP Cavities. Experimental set-up

Photodetector

LED

nanoFabry-Perots

optical fiber

coupler

nanocavity

index matching gel

sensing element
Novel fiber optic sensing architectures based on sensitive nanofilms
Novel fiber optic sensing architectures based on sensitive nanofilms

NFP Cavities. pH Sensors

- nanofabry-perots
Novel fiber optic sensing architectures based on sensitive nanofilms

NFP Cavities. pH Sensors

![Graph showing absorbance over time for pH 7 and pH 5](image)
Novel fiber optic sensing architectures based on sensitive nanofilms

NFP Cavities. pH Sensors

Graph showing reflected optical power (dB) over time (min) with peaks at pH = 6, pH = 5, and pH = 4.
Novel fiber optic sensing architectures based on sensitive nanofilms

NFP Cavities. Ammonia sensors

- Spectral response to:
 - 11 %RH
 - 43 %RH
 - 98 %RH
 - Acetone
 - Ethanol
 - Dichloromethane

- < 4% of cross-sensitivity to other compounds

- 5.6 dB with NH$_3$

Novel fiber optic sensing architectures based on sensitive nanofilms

NFP Cavities. Ammonia sensors

Dynamic response of a 25 bilayers sensor to Ammonia
Novel fiber optic sensing architectures based on sensitive nanofilms

NFP Cavities. Ammonia sensors

Recovery time < 4 seconds

Novel fiber optic sensing architectures based on sensitive nanofilms

NFP Cavities. Volatile organic compounds sensors

\[\text{[Vap+PAH^+/PAA^-]} \]

![Graph showing reflected optical power vs. layer number for PAH+Vap and PAA-](image)

Sensors and Actuators B. Vol. 115 (1); pp. 444-449, 2006
Novel fiber optic sensing architectures based on sensitive nanofilms

NFP Cavities. Volatile organic compounds sensors

Absorbance spectra of the sensor after 40 minutes exposure
Novel fiber optic sensing architectures based on sensitive nanofilms

NFP Cavities. Volatile organic compounds sensors

Response of the sensor for different methanol concentrations

Reflected Optical power (dB)

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 mmol/l (methanol)</td>
<td>-3</td>
<td>-2.5</td>
<td>-2</td>
<td>-1.5</td>
<td>-1</td>
<td>-0.5</td>
<td>0</td>
</tr>
<tr>
<td>62 mmol/l (methanol)</td>
<td>-3</td>
<td>-2.5</td>
<td>-2</td>
<td>-1.5</td>
<td>-1</td>
<td>-0.5</td>
<td>0</td>
</tr>
<tr>
<td>125 mmol/l (methanol)</td>
<td>-3</td>
<td>-2.5</td>
<td>-2</td>
<td>-1.5</td>
<td>-1</td>
<td>-0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Novel fiber optic sensing architectures based on sensitive nanofilms

NFP Cavities. Volatile organic compounds sensors

Response of the sensor for different ethanol concentrations

- 21.5 mmol/l (ethanol)
- 43 mmol/l (ethanol)
- 86 mmol/l (ethanol)
Novel fiber optic sensing architectures based on sensitive nanofilms

NFP Cavities. Volatile organic compounds sensors

Comparison between ethanol and methanol

![Graph comparing reflected optical power between ethanol and methanol](image-url)
Response of the sensor for different concentrations of hydrogen peroxide at pH 4:

1. Reflected optical power
2. Slope of the change in the reflected power
3. Response time
Novel fiber optic sensing architectures based on sensitive nanofilms

NFP Cavities. Human breathing

Sensor and opto-electronic units

Face mask and sensor
NFP Cavities. Human breathing

IEICE Transactions on Electronics, vol. E83-C (3); pp. 360-365, 2000
Novel fiber optic sensing architectures based on sensitive nanofilms

NFP Cavities. Interrogator system for NFP reflexive sensors

NanoSonic, Inc.
Novel fiber optic sensing architectures based on sensitive nanofilms

NFP Cavities. Humidity sensors using silica nano-spheres

Caracterization (AFM)

50 nm SiO$_2$ nanoparticles
Contact angle: 5°
Surface: Silica
Summary

- Introduction to the fiber optic sensor market
- Nanotechnology and fiber optic sensors?
- The Electrostatic Self-Assembled Monolayer Method
- Possible sensing architectures based on nano-films
 - Tapered ends
 - Tapered optical fibers
 - Hollow core fibers
 - Long period gratings
 - Optical fiber gratings
 - NanoFabry-Perot Cavities

- Conclusions
CONCLUSIONS

• The Layer-by-Layer Electrostatic Self-Assembly Method has been presented as a useful tool for fabricating nano-structured sensing coatings, not only fiber optic sensors.

• These coatings can be deposited on substrates of different shapes: flat, cylindrical or conical.

• Different optical fiber sensors have been already experimentally demonstrated (humidity, volatile organic compounds, ammonia, glucose, etc.) and the possible applications of this technique in the sensing field are very promising.

• The sensors have a very fast response time, can operate at room temperature and it is possible to find a suitable architecture depending on the specific application.

• Several different optical fiber structures to fabricate sensors have been proposed: Tapered ends, Tapered optical fibers, Hollow core fibers, Long period gratings, Optical fiber gratings, NanoFabry-Perot Cavities, 1D PBG with defects, etc.). All of them are feasible to be implemented using ESA technique with different sensing properties and final performances.

• It is possible to design specific sensors for specific applications by varying any of the design parameters: materials, thickness, number of bilayers, structures, etc.
ACKNOWLEDGEMENTS

This is the result of the contribution of many people

Public University of Navarre

Ignacio Del Villar
Jesus M. Corres
Javier Bravo
Javier Goicoechea
Carlos Ruiz
Cesar Elosua
Miguel Achaerandio
Manuel Lopez-Amo
Candido Bariain

All the people at Nanosonic, Inc
www.nanosonic.com

All the people at Virginia Tech
Fiber & Electro-Optics
RESEARCH CENTER

Virginia Tech
VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY
NOVEL FIBER OPTIC SENSING ARCHITECTURES BASED ON SENSITIVE NANOFILMS

Ignacio R. Matias, Francisco J. Arregui and Richard O. Claus

natxo@unavarra.es parregui@unavarra.es roclaus@nanosonic.com