The Social Grid

Leveraging the Power of the Web
Focus on Development Simplicity

Roger S. Barga, PhD
Architect, Technical Computing at Microsoft
Technical Computing at Microsoft
http://www.microsoft.com/science

Accelerating Discovery

Earth Sciences

Collaborative Research

Life Sciences

Computer & Information Sciences

New Materials, Technologies & Processes

Social Sciences

Math and Physical Science

E=MC²
Emergence of a New Science Paradigm

Thousand years ago – **Experimental Science**
– Description of natural phenomena

Last few hundred years – **Theoretical Science**
– Newton’s Laws, Maxwell’s Equations...

Last few decades – **Computational Science**
– Simulation of complex phenomena

Today – **Data-Centric Science or eScience**
– Unify theory, experiment, and simulation
 – Using data exploration and data mining
 • Data captured by instruments
 • Data generated by simulations
 • Data generated by sensor networks

Slide thanks to Jim Gray
A New Set of Challenges

• Grid middleware and cyberinfrastructure is fast becoming too complex and difficult to use

• Support the transition to data-centric eScience
 – Computation is no longer the bottleneck

• New dynamic in science investigations
 – Collaborative, distributed, cross disciplinary
 – Science is becoming highly social (Research 2.0)

• Need for simplicity and ease of development

• Can we learn lessons from the Web
The Web as a Platform for Research?

- Has tremendous momentum
- It is the channel for result dissemination
- The browser is the universal canvas for the delivery of information and functionality
- Web protocols, technologies, and middleware are well supported by the IT industry
- Today it is the contemporary platform for distributed, internet-scale applications
- Emergence of “software-as-a-service”
- Collection of ‘Web 2.0’ technologies is maturing
Scientific Data Servers for Hydrology

Work with Berkeley Water Center to use modern (relational) database technology

– 149 Ameriflux sites across the Americas reporting minimum of 22 common measurements

– Carbon-Climate Data published to and archived at Oak Ridge

– Total data reported to date on the order of 192M half-hourly measurements since 1994

http://public.ornl.gov/ameriflux/

Microsoft Project Lead: Catharine van Ingen
Mashup of Ameriflux Sites

Work of Savas Parastatidis
Programmable Sensors & Remote Instruments

Undersea Sensor Network

Connected & Controllable Over the Internet
Trident – Scientific Workflow for Neptune

Custom activities for oceanographers

In-browser workflow editing

Work of TCI Summer Interns: Nolan Li and Luciano Digiampietri
Trident for Neptune

Workflow workbench for oceanography

From raw sensor data to useable data products

Automatic data cleaning, Integrates multiple models, Regridding & interpolation, Analysis

Real time, on-demand visualization from the Neptune sensor array
myGrid and the Taverna Workflow System

• Independent third party world-wide service providers of applications, tools and data sets – *in the cloud*.

• My local applications, tools and datasets. In the Enterprise. In the laboratory.

• Easily incorporate new service without coding. So even more services from the cloud and enterprise.

Slide thanks to Carole Goble and David DeRoure
Individual life scientists, in under-resourced labs, who use other people’s applications, with little systems support.

- Exploratory workflows
- Developers (often) the users.
- Consumers are providers.

- A distributed, disconnected community of scientists.
- Decoupled suppliers and consumers of services and workflows.
- Scientists in an enterprise and in large projects
- Scientists out of the enterprise, in small projects or sole traders.

200+ projects and sites, ~1000 individual users. Users throughout UK, USA, Europe, and SE Asia
On the Web

• Users generate content on the Web
 – Blogs, wikis, photographs, videos, etc.
 – They do not have to know HTML

• They form communities
 – Social networks, virtual worlds

• They interact, collaborate, share
 – Instant messaging, web forums, content sites

• They consume information and services
 – Search, annotate, syndicate
And Scientists Today...

- Annotate, share, discover data
- Collaborate, exchange ideas over the Web
- Create communities, social networks
- Use workflow tools to compose services
Example – Connotea (Nature Publishing)

Connotea Organize. Share. Discover.

Tags used on these bookmarks:
- social networking
- social bookmarking
- social software
- india
- networking
- php
- social computing
- xml
- web 2.0
- developers
- programmers
- outsourcing
- application
- social tagging
- web
collaboration
- social networks
digital library
- emergencies
- health library
- open
- social apps
- source
- news
solutions
- social

You are logged in as savas

My library
Log out

Search All

social networking

Find results

Search terms social and networking

Export CSV
Page 1

Toolbox

Add a bookmark

Number of bookmarks per page:
10 | 25 | 50 | 100

Search - Wikipedia, the free encyclopedia
en.wikipedia.org
Section 4, as of 5/1/2007, is about “Social Networking, Internet Social Networks.”
Posted by ascoppin to social computing Web 2.0 on Tue May 01 2007 at 19:26 UTC | info

Social Networking Leaves Confines of the Computer - New York Times
www.nytimes.com
Posted by Library_mistress to networking Social social software on Mon Apr 30 2007 at 15:34 UTC | info

Social-networking sites link Hispanic youth
www.cnn.com
MIAMI, Florida (AP) -- Indie rocker Eric Monterrosa checks his ElHood.com Web page at least three times a day, answering fans, surfing for other new Latin artists and keeping in touch with friends from his native Colombia.
Posted by msgbeep to news on Sun Apr 29 2007 at 16:47 UTC | info

Social networking in the health context
www.ingentaconnect.com
Software and services for creating online social networks.
Posted by Spiky to social apps on Tue Apr 24 2007 at 15:58 UTC | info

Related tags:
- social bookmarking
- folk economy
- bookmarking
- collaborative - tagging
- tagging
- collaborative tagging
csd-picasso-folks

Internet | Protected Mode: On
Mashups: Composing Data and Functionality

SensorMap
Functionality: Map navigation
Data: sensor-generated temperature, video camera feed, traffic feeds, etc.
The Web as a Platform for eResearch

Services not middleware

- **No need to install many thousands of lines of middleware**

Core Services in the Cloud

- Identity
- Blogging, Messaging
- Search, Discovery
- Data processing/visualization
- Content upload, sharing, discovery
- Computation and Storage

http://ecrystals.chem.soton.ac.uk

Thanks to Jeremy Frey
Data and Services can be Accessed Securely

- Windows Live ID
- Google Account
- Open ID
- Amazon EC2 and its custom SOAP-based authentication
Services Expose Functionality

BLAST service (WSDL) that can be integrated into an application

BLAST service delivered through a Web browser
Services can be Composed

Taverna Workflow
Data is Easily Shareable

Sloan Digital Sky Server/SkyServer
http://cas.sdss.org/dr5/en/
Knowledge can be created/published/archived/discovered

- Semantic relationships between different data
- Semantic descriptions of services
- Annotations
- Provenance
- Repositories
- Ontologies
- Folksonomies
Grids in Industry

- Google, Amazon, Yahoo, eBay and Microsoft are the major ‘Cloud Platform’ providers
 - All have infrastructures of hundreds of thousands of servers
 - Many large data centers, distributed across multiple continents
 - Have developed proprietary technologies for job scheduling, data sharing and management
 - Care about power consumption, fault tolerance, scalability, operational costs, performance, etc.

They are living the “Grid dream” on a daily basis
Google as an Example

- Estimated 450,000* servers distributed around the world

- Google File System - highly distributed, resilient to failures, parallel, etc.

- Schedulers and load balancers for the distribution of work
 - Use their ‘Map-Reduce’ middleware as parallel computational model
Amazon web services: simple storage service (s3)

• S3 is storage for the Internet
 – Designed to make web-scale computing easier for developers

• Provides a simple Web Services interface to store and retrieve any amount of data from anywhere on the Web
 – ‘CRUD’ philosophy – Create, Read, Update and Delete operations

• Uses simple standards-based REST and SOAP Web Service interfaces
 – Built to be flexible so that protocol or functional layers can easily be added
Amazon s3 Functionality

• Intentionally built with a minimal feature set
 – Write, read, and delete objects containing from 1 byte
to 5 gigabytes of data each

• Can store unlimited number of objects
 – Each object is stored and retrieved via a unique,
developer-assigned key

• Authentication mechanisms provided
 – Objects can be made private or public, and rights can
be granted to specific users

• Default download protocol is HTTP
 – BitTorrent protocol interface is provided to lower costs
for high-scale distribution
Amazon web services: elastic compute cloud (ec2)

- Compute on demand service that works seamlessly with their S3 storage service
- Create Amazon Machine Image (AMI) containing application, libraries and data
- Use EC2 Web Service to configure security and network access
- Use EC2 to start, terminate and monitor as many instances of your AMI as you want

Each instance has:
- 1.7 GHz x86 Processor
- 1.75 GB RAM
- 160 GB local disk
- 250 MB/s network bandwidth

Used by Catlett and Beckman as capacity computing alternative to TeraGrid 'SPRUCE' capability computing for emergency urgent response
A Grad Student Project Using S3 and EC2

Gene Analysis Virtual Lab Experiment
by Jong Youl Choi
at Indiana
(For Beth Plale and Sun Kim)
Data-Intensive High-Performance Computing

- A new generation of facilities to support eResearch on the cloud
- Data-intensive
 - Large storage capacity
 - Functional-style programming for data filtering, searching (e.g. MapReduce)
 - Storage-as-a-service
- Compute-intensive
 - State-of-the-art clusters
 - No need to be the fastest in the world; few top100 ones
 - Scientific applications-as-services
Focus on solutions for scientific/technical computing and not just on infrastructure

Focus on “data-centric eScience”
– Help domain experts define formats for representing and annotating domain-specific data

Keep it simple, build on known Web technologies
– Solutions that “just work” without the need for complicated middleware platforms
– Leverage only existing, Web infrastructure (HTTP, XML, simple Web Services, services in the cloud)